Time filter

Source Type

Kumar P.,Korea Astronomy and Space Science Institute KASI | Cho K.-S.,Korea Astronomy and Space Science Institute KASI
Astronomy and Astrophysics | Year: 2014

We analyzed multiwavelength observations of a western limb flare (C3.9) that occurred in AR NOAA 111465 on 30 April 2012. The high-resolution images recorded by SDO/AIA 304, 1600 Å and Hinode/SOT Hα show the activation of a small filament (rising speed ~40 km s-1) associated with a kink instability and the onset of a C-class flare near the southern leg of the filament. The first magnetic reconnection occurred at one of the footpoints of the filament and caused the breaking of its southern leg. The filament shows unwinding motion of the northern leg and apex in counterclockwise direction and failed to erupt. A flux-rope structure (visible only in hot channels, i.e., AIA 131 and 94 Å and Hinode/SXT) appeared along the neutral line during the second magnetic reconnection that occurred above the kinked filament. The formation of the RHESSI hard X-ray source (12-25 keV) above the kinked filament and the simultaneous appearance of the hot 131 Å loops associated with photospheric brightenings (AIA 1700 Å) indicates the particle acceleration along these loops from the top of the filament. In addition, extreme ultraviolet disturbances or waves observed above the filament in 171 Å also show a close association with magnetic reconnection. The flux rope rises slowly (∼100 km s-1), which produces a very large twisted structure possibly through reconnection with the surrounding sheared magnetic fields within∼15-20 min, and showed an impulsive acceleration reaching a height of about 80-100 Mm. AIA 171 and SWAP 174 Å images reveal a cool compression front (or coronal mass ejection frontal loop) surrounding the hot flux rope structure. © 2014 ESO.


Kumar P.,Korea Astronomy and Space Science Institute KASI | Cho K.-S.,Korea Astronomy and Space Science Institute KASI | Cho K.-S.,NASA | Cho K.-S.,Catholic University of America | And 3 more authors.
Astrophysical Journal | Year: 2012

In this paper, we present multiwavelength observations of helical kink instability as a trigger of a coronal mass ejection (CME) which occurred in active region NOAA 11163 on 2011 February 24. The CME was associated with an M3.5 limb flare. High-resolution observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly suggest the development of helical kink instability in the erupting prominence, which implies a flux rope structure of the magnetic field. A brightening starts below the apex of the prominence with its slow rising motion (100kms-1) during the activation phase. A bright structure, indicative of a helix with 3-4 turns, was transiently formed at this position. The corresponding twist of 6π-8π is sufficient to generate the helical kink instability in a flux rope according to recently developed models. A slowly rising blob structure was subsequently formed at the apex of the prominence, and a flaring loop was observed near the footpoints. Within 2minutes, a second blob was formed in the northern prominence leg. The second blob erupts (like a plasmoid ejection) with the detachment of the northern prominence leg, and flare intensity maximizes. The first blob at the prominence apex shows rotational motion in the counterclockwise direction in the plane of sky, interpreted as the unwinding motion of a helix, and it also erupts to give the CME. RHESSI hard X-ray (HXR) sources show the two footpoint sources and a loop-top source during the flare. We found RHESSIHXR flux, soft X-ray flux derivative, and CME acceleration in the low corona correlate well, which is in agreement with the standard flare model (CSHKP). We also discuss the possible role of ballooning as well as torus instabilities in driving the CME. We conclude that the CME and flare were triggered by the helical kink instability in a flux rope and accelerated mainly by the torus instability. © 2012. The American Astronomical Society. All rights reserved.


Jo Y.-S.,Korea Advanced Institute of Science and Technology | Min K.-W.,Korea Advanced Institute of Science and Technology | Lim T.-H.,Korea Advanced Institute of Science and Technology | Seon K.-I.,Korea Astronomy and Space Science Institute KASI
Astrophysical Journal | Year: 2012

We present the results of dust scattering simulations carried out for the Orion-Eridanus Superbubble region by comparing them with observations made in the far-ultraviolet. The albedo and the phase function asymmetry factor (g-factor) of interstellar grains were estimated, as were the distance and thickness of the dust layers. The results are as follows: 0.43+0.02 - 0.04 for the albedo and 0.45+0.2 - 0.2 for the g-factor, in good agreement with previous determinations and theoretical predictions. The distance of the assumed single dust layer, modeled for the Orion Molecular Cloud Complex, was estimated to be ∼110pc and the thickness ranged from ∼130 at the core to ∼50pc at the boundary for the region of present interest, implying that the dust cloud is located in front of the superbubble. The simulation result also indicates that a thin (∼10pc) dust shell surrounds the inner X-ray cavities of hot gas at a distance of ∼70-90pc. © © 2012. The American Astronomical Society. All rights reserved..


Kumar P.,Korea Astronomy and Space Science Institute KASI | Kumar P.,Max Planck Institute for Solar System Research | Innes D.E.,Max Planck Institute for Solar System Research
Solar Physics | Year: 2013

Images of an east-limb flare on 3 November 2010 taken in the 131 Å channel of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory provide a convincing example of a long current sheet below an erupting plasmoid, as predicted by the standard magnetic reconnection model of eruptive flares. However, the 171 Å and 193 Å channel images hint at an alternative scenario. These images reveal that large-scale waves with velocity greater than 1000 km s-1 propagated alongside and ahead of the erupting plasmoid. Just south of the plasmoid, the waves coincided with type-II radio emission, and to the north, where the waves propagated along plume-like structures, there was increased decimetric emission. Initially, the cavity around the hot plasmoid expanded. Later, when the erupting plasmoid reached the height of an overlying arcade system, the plasmoid structure changed, and the lower parts of the cavity collapsed inwards. Hot loops appeared alongside and below the erupting plasmoid. We consider a scenario in which the fast waves and the type-II emission were a consequence of a flare blast wave, and the cavity collapse and the hot loops resulted from the break-out of the flux rope through an overlying coronal arcade. © 2013 Springer Science+Business Media Dordrecht.


Kumar P.,Korea Astronomy and Space Science Institute KASI | Cho K.-S.,Korea Astronomy and Space Science Institute KASI
Astronomy and Astrophysics | Year: 2013

We present a multiwavelength study of the X-class flare, which occurred in active region (AR) NOAA 11339 on 3 November 2011. The extreme ultraviolet (EUV) images recorded by SDO/AIA show the activation of a remote filament (located north of the AR) with footpoint brightenings about 50 min prior to the flare's occurrence. The kinked filament rises up slowly, and after reaching a projected height of ∼49 Mm, it bends and falls freely near the AR, where the X-class flare was triggered. Dynamic radio spectrum from the Green Bank Solar Radio Burst Spectrometer (GBSRBS) shows simultaneous detection of both positive and negative drifting pulsating structures (DPSs) in the decimetric radio frequencies (500-1200 MHz) during the impulsive phase of the flare. The global negative DPSs in solar flares are generally interpreted as a signature of electron acceleration related to the upward-moving plasmoids in the solar corona. The EUV images from AIA 94 Å reveal the ejection of multiple plasmoids, which move simultaneously upward and downward in the corona during the magnetic reconnection. The estimated speeds of the upward- and downward-moving plasmoids are ∼152-362 and ~83-254 km s-1, respectively. These observations strongly support the recent numerical simulations of the formation and interaction of multiple plasmoids due to tearing of the current-sheet structure. On the basis of our analysis, we suggest that the simultaneous detection of both the negative and positive DPSs is most likely generated by the interaction or coalescence of the multiple plasmoids moving upward and downward along the current-sheet structure during the magnetic reconnection process. Moreover, the differential emission measure (DEM) analysis of the active region reveals a hot flux-rope structure (visible in AIA 131 and 94 Å) prior to the flare initiation and ejection of the multitemperature plasmoids during the flare impulsive phase. © ESO, 2013.


Lim T.-H.,Korea Advanced Institute of Science and Technology | Min K.-W.,Korea Advanced Institute of Science and Technology | Seon K.-I.,Korea Astronomy and Space Science Institute KASI
Astrophysical Journal | Year: 2013

We have constructed a far-ultraviolet (FUV) continuum map of the Taurus-Auriga-Perseus complex, one of the largest local associations of dark clouds, by merging the two data sets of Galaxy Evolution Explorer and FUV Imaging Spectrograph, which made observations at similar wavelengths. The FUV intensity varies significantly across the whole region, but the diffuse FUV continuum is dominated by dust scattering of stellar photons. A diffuse FUV background of 1000 CU is observed, part of which may be attributable to the scattered photons of foreground FUV light, located in front of the thick clouds. The fluorescent emission of molecular hydrogen constitutes 10% of the total FUV intensity throughout the region, generally proportional to the local continuum level. We have developed a Monte Carlo radiative transfer code and applied it to the present clouds complex to obtain the optical properties of dust grains and the geometrical structures of the clouds. The albedo and the phase function asymmetry factor were estimated to be 0.42+0.05-0.05, and 0.47 +0.11-0.27, respectively, in accordance with theoretical estimations as well as recent observations. The distance and thickness of the four prominent clouds in this complex were estimated using a single-slab model applied individually to each cloud. The results obtained were in good agreement with those from other observations of the Taurus cloud, as its geometrical structure is rather simple. For other clouds that were observed to have multiple components, the results gave distances and thicknesses encompassing all of the components of each cloud. The distance and thickness estimations were not crucially sensitive to the exact values of the albedo and the phase function asymmetry factor, while the locations of the bright field stars relative to the clouds as initial photon sources seem to be the most important factor in the process of fitting. © 2013. The American Astronomical Society. All rights reserved.


Kumar P.,Korea Astronomy and Space Science Institute KASI | Manoharan P.K.,Tata Institute of Fundamental Research
Astronomy and Astrophysics | Year: 2013

We present a multiwavelength study of the formation and ejection of a plasma blob and associated extreme ultraviolet (EUV) waves in active region (AR) NOAA 11176, observed by SDO/AIA and STEREO on 25 March 2011. The EUV images observed with the AIA instrument clearly show the formation and ejection of a plasma blob from the lower atmosphere of the Sun at ~9 min prior to the onset of the M1.0 flare. This onset of the M-class flare happened at the site of the blob formation, while the blob was rising in a parabolic path with an average speed of ~300 km s. The blob also showed twisting and de-twisting motion in the lower corona, and the blob speed varied from ~10-540 km s. The faster and slower EUV wavefronts were observed in front of the plasma blob during its impulsive acceleration phase. The faster EUV wave propagated with a speed of ~785 to 1020 km s, whereas the slower wavefront speed varied in between ~245 and 465 km s. The timing and speed of the faster wave match the shock speed estimated from the drift rate of the associated type II radio burst. The faster wave experiences a reflection by the nearby AR NOAA 11177. In addition, secondary waves were observed (only in the 171 Å channel), when the primary fast wave and plasma blob impacted the funnel-shaped coronal loops. The Helioseismic Magnetic Imager (HMI) magnetograms revealed the continuous emergence of new magnetic flux along with shear flows at the site of the blob formation. It is inferred that the emergence of twisted magnetic fields in the form of arch-filaments/ "anemone-type" loops is the likely cause for the plasma blob formation and associated eruption along with the triggering of M-class flare. Furthermore, the faster EUV wave formed ahead of the blob shows the signature of fast-mode MHD wave, whereas the slower wave seems to be generated by the field line compression by the plasma blob. The secondary wave trains originated from the funnel-shaped loops are probably the fast magnetoacoustic waves. © ESO 2013.


Kumar P.,Korea Astronomy and Space Science Institute KASI | Kumar P.,Max Planck Institute for Solar System Research | Innes D.E.,Max Planck Institute for Solar System Research | Inhester B.,Max Planck Institute for Solar System Research
Astrophysical Journal Letters | Year: 2013

We report high resolution observations from the Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) of intensity oscillations in a hot, T ∼ 8-10 MK, loop. The AIA images show a large coronal loop that was rapidly heated following plasma ejection from one of the loop's footpoints. A wave-like intensity enhancement, seen very clearly in the 131 and 94 Å channel images, propagated ahead of the ejecta along the loop, and was reflected at the opposite footpoint. The wave reflected four times before fading. It was only seen in the hot, 131 and 94 Å channels. The characteristic period and the decay time of the oscillation were ∼630 and ∼440 s, respectively. The phase speed was about 460-510 km s-1 which roughly matches the sound speed of the loop (430-480 km s-1). The observed properties of the oscillation are consistent with the observations of Dopper-shift oscillations discovered by the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation and with their interpretation as slow magnetoacoustic waves. We suggest that the impulsive injection of plasma, following reconnection at one of the loop footpoints, led to rapid heating and the propagation of a longitudinal compressive wave along the loop. The wave bounces back and forth a couple of times before fading. © 2013. The American Astronomical Society. All rights reserved.


Farzinnia A.,Korea Basic Science Institute | Kouwn S.,Korea Astronomy and Space Science Institute KASI
Physical Review D - Particles, Fields, Gravitation and Cosmology | Year: 2016

We introduce a minimal and yet comprehensive framework with CP and classical scale symmetries in order to simultaneously address the hierarchy problem, neutrino masses, dark matter, and inflation. One complex gauge singlet scalar and three flavors of the right-handed Majorana neutrinos are added to the standard model content, facilitating the see-saw mechanism, among others. An adimensional theory of gravity (Agravity) is employed, allowing for the trans-Planckian field excursions. The weak and Planck scales are induced by the Higgs portal and the scalar nonminimal couplings, respectively, once a Coleman-Weinberg dynamically generated vacuum expectation value for the singlet scalar is obtained. All scales are free from any mutual quadratic destabilization. The CP symmetry prevents a decay of the pseudoscalar singlet, rendering it a suitable WIMPzilla dark matter candidate with the correct observational relic abundance. Identifying the pseudo-Nambu-Goldstone boson of the (approximate) scale symmetry with the inflaton field, the model accommodates successful slow-roll inflation, compatible with the observational data. We reach the conclusion that a pseudo-Nambu-Goldstone inflaton, within a classically scale-symmetric framework, yields lighter WIMPzillas. © 2016 American Physical Society.


Kumar P.,Korea Astronomy and Space Science Institute KASI | Manoharan P.K.,Tata Institute of Fundamental Research | Uddin W.,Aryabhatta Research Institute of Observational science ARIES
Solar Physics | Year: 2011

We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the Hα observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i. e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and Hα observations revealed two successive ejections (of speeds ≈ 350 and ≈ 100 km s-1), originating from the same filament channel, which were associated with two high speed CMEs (≈ 1223 and ≈ 1660 km s-1, respectively). These two ejections generated propagating fast shock waves (i. e., fast-drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun-Earth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dstpeak=-472 nT) on the Earth. © 2011 Springer Science+Business Media B.V.

Loading Korea Astronomy and Space Science Institute KASI collaborators
Loading Korea Astronomy and Space Science Institute KASI collaborators