Entity

Time filter

Source Type


Park J.,Korea Astronomy and Space Science Institute Daejeon Korea | Luhr H.,Helmholtz Center Potsdam | Michaelis I.,Helmholtz Center Potsdam | Stolle C.,Helmholtz Center Potsdam | And 5 more authors.
Journal of Geophysical Research A: Space Physics | Year: 2015

In this study we investigate the three-dimensional structure of low-latitude plasma blobs using multi-instrument and multisatellite observations of the Swarm constellation. During the early commissioning phase the Swarm satellites were flying at the same altitude with zonal separation of about 0.5{ring operator} in geographic longitude. Electron density data from the three satellites constrain the blob morphology projected onto the horizontal plane. Magnetic field deflections around blobs, which originate from field-aligned currents near the irregularity boundaries, constrain the blob structure projected onto the plane perpendicular to the ambient magnetic field. As the two constraints are given for two noncoplanar surfaces, we can get information on the three-dimensional structure of blobs. Combined observation results suggest that blobs are contained within tilted shells of geomagnetic flux tubes, which are similar to the shell structure of equatorial plasma bubbles suggested by previous studies. © 2015. American Geophysical Union. All Rights Reserved. Source


Kim R.-S.,Korean University of Science and Technology | Cho K.-S.,Korean University of Science and Technology | Lee J.,Seoul National University | Bong S.-C.,Korean University of Science and Technology | And 2 more authors.
Journal of Geophysical Research A: Space Physics | Year: 2015

Solar proton events (SPEs) can be categorized into four groups based on their associations with flare or CME inferred from onset timings as well as acceleration patterns using multienergy observations. In this study, we have investigated whether there are any typical characteristics of associated events and acceleration sites in each group using 42 SPEs from 1997 to 2012. We find the following: (i) if the proton acceleration starts from a lower energy, a SPE has a higher chance to be a strong event (> 5000 particle flux per unit (pfu)) even if its associated flare and/or CME are not so strong. The only difference between the SPEs associated with flare and CME is the location of the acceleration site. (ii) For the former (Group A), the sites are very low (∼ 1 Rs) and close to the western limb, while the latter (Group C) have relatively higher (mean = 6.05 Rs) and wider acceleration sites. (iii) When the proton acceleration starts from the higher energy (Group B), a SPE tends to be a relatively weak event (< 1000 pfu), although its associated CME is relatively stronger than previous groups. (iv) The SPEs categorized by the simultaneous acceleration in whole energy range within 10 min (Group D) tend to show the weakest proton flux (mean = 327 pfu) in spite of strong associated eruptions. Based on those results, we suggest that the different characteristics of SPEs are mainly due to the different conditions of magnetic connectivity and particle density, which are changed with longitude and height as well as their origin. ©2015. The Authors. Source


Cho J.,Chungbuk National University | Lee D.-Y.,Chungbuk National University | Kim J.-H.,Chungbuk National University | Shin D.-K.,Chungbuk National University | And 2 more authors.
Journal of Geophysical Research A: Space Physics | Year: 2015

It is well known that the plasmapause is influenced by the solar wind and magnetospheric conditions. Empirical models of its location have been previously developed such as those by O'Brien and Moldwin (2003) and Larsen et al. (2006). In this study, we identified the locations of the plasmapause using the plasma density data obtained from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellites. We used the data for the period (2008-2012) corresponding to the ascending phase of Solar Cycle 24. Our database includes data from over a year of unusually weak solar wind conditions, correspondingly covering the plasmapause locations in a wider L range than those in previous studies. It also contains many coronal hole stream intervals during which the plasmasphere is eroded and recovers over a timescale of several days. The plasmapause was rigorously determined by requiring a density gradient by a factor of 15 within a radial distance of 0.5L. We first determined the statistical correlation of the plasmapause locations with several solar wind parameters as well as geomagnetic indices. We found that the plasmapause locations are well correlated with the solar wind speed and the interplanetary magnetic field Bz, therefore the y component of the convective electric field, and some energy coupling functions such as the well-known Akasofu's epsilon parameter. The plasmapause locations are also highly correlated with the geomagnetic indices, Dst, AE, and Kp, as recognized previously. Finally, we suggest new model fit functions for the plasmapause locations in terms of the solar wind parameters and geomagnetic indices. When applied to a new data interval outside the model training interval, our model fit functions work better than existing ones. The new model fit functions developed here extend the range of conditions from those used in previous works. ©2015. American Geophysical Union. Source

Discover hidden collaborations