Time filter

Source Type

News Article | February 23, 2017
Site: www.eurekalert.org

Glowing nebula found at the heart of a huge "rotocluster' of early galaxies appears to be part of the cosmic web of filaments connecting galaxies, but what's lighting it up? Astronomers have found an enormous, glowing blob of gas in the distant universe, with no obvious source of power for the light it is emitting. Called an "enormous Lyman-alpha nebula" (ELAN), it is the brightest and among the largest of these rare objects, only a handful of which have been observed. ELANs are huge blobs of gas surrounding and extending between galaxies in the intergalactic medium. They are thought to be parts of the network of filaments connecting galaxies in a vast cosmic web. Previously discovered ELANs are likely illuminated by the intense radiation from quasars, but it's not clear what is causing the hydrogen gas in the newly discovered nebula to emit Lyman-alpha radiation (a characteristic wavelength of light absorbed and emitted by hydrogen atoms). The newly discovered nebula was found at a distance of 10 billion light years in the middle of a region with an extraordinary concentration of galaxies. Researchers found this massive overdensity of early galaxies, called a "protocluster," through a novel survey project led by Zheng Cai, a Hubble Postdoctoral Fellow at UC Santa Cruz. "Our survey was not trying to find nebulae. We're looking for the most overdense environments in the early universe, the big cities where there are lots of galaxies," said Cai. "We found this enormous nebula in the middle of the protocluster, near the peak density." Cai is first author of a paper on the discovery accepted for publication in the Astrophysical Journal and available online at arxiv.org/abs/1609.04021. His survey project is called Mapping the Most Massive Overdensities Through Hydrogen (MAMMOTH), and the newly discovered ELAN is known as MAMMOTH-1. Coauthor J. Xavier Prochaska, professor of astronomy and astrophysics at UC Santa Cruz, said previously discovered ELANs have been detected in quasar surveys. In those cases, the intense radiation from a quasar illuminated hydrogen gas in the nebula, causing it to emit Lyman-alpha radiation. Prochaska's team discovered the first ELAN, dubbed the "Slug Nebula," in 2014. MAMMOTH-1 is the first one not associated with a visible quasar, he said. "It's extremely bright, and it's probably larger than the Slug Nebula, but there's nothing else visible except the faint smudge of a galaxy. So it's a terrifically energetic phenomenon without an obvious power source," Prochaska said. Equally impressive is the enormous protocluster in which it resides, he said. Protoclusters are the precursors to galaxy clusters, which consist of hundreds to thousands of galaxies bound together by gravity. Because protoclusters are spread out over a much larger area of the sky, they are much harder to find than galaxy clusters. The protocluster hosting the MAMMOTH-1 nebula is massive, with an unusually high concentration of galaxies in an area about 50 million light years across. Because it is so far away (10 billion light years), astronomers are in effect looking back in time to see the protocluster as it was 10 billion years ago, or about 3 billion years after the big bang, during the peak epoch of galaxy formation. After evolving for 10 billion more years, this protocluster would today be a mature galaxy cluster perhaps only one million light years across, having collapsed down to a much smaller area, Prochaska said. The standard cosmological model of structure formation in the universe predicts that galaxies are embedded in a cosmic web of matter, most of which is invisible dark matter. The gas that collapses to form galaxies and stars traces the distribution of dark matter and extends beyond the galaxies along the filaments of the cosmic web. The MAMMOTH-1 nebula appears to have a filamentary structure that aligns with the galaxy distribution in the large-scale structure of the protocluster, supporting the idea that ELANs are illuminated segments of the cosmic web, Cai said. "From the distribution of galaxies we can infer where the filaments of the cosmic web are, and the nebula is perfectly aligned with that structure," he said. Cai and his coauthors considered several possible mechanisms that could be powering the Lyman-alpha emission from the nebula. The most likely explanations involve radiation or outflows from an active galactic nucleus (AGN) that is strongly obscured by dust so that only a faint source can be seen associated with the nebula. An AGN is powered by a supermassive black hole actively feeding on gas in the center of a galaxy, and it is usually an extremely bright source of light (quasars being the most luminous AGNs in visible light). The intense radiation from an AGN can ionize the gas around it (called photoionization), and this may be one mechanism at work in MAMMOTH-1. When ionized hydrogen in the nebula recombines it would emit Lyman-alpha radiation. Another possible mechanism powering the Lyman-alpha emissions is shock heating by a powerful outflow of gas from the AGN. The researchers described several lines of evidence supporting the existence of a hidden AGN energizing the nebula, including the dynamics of the gas and emissions from other elements besides hydrogen, notably helium and carbon. "It has all the hallmarks of an AGN, but we don't see anything in our optical images. I expect there's a quasar that is so obscured by dust that most of its light is hidden," Prochaska said. In addition to Cai and Prochaska at UC Santa Cruz, the team includes coauthors at Steward Observatory, University of Arizona; Korea Astronomy and Space Institute; Mount Stromlo Observatory, Australia; Pontifical Catholic University of Chile; Institute for Astronomy, ETH Zurich; California Institute of Technology; Kavli Institute for Astronomy and Astrophysics, Peking University; and National Astronomical Observatory of Japan. This research was supported by the National Science Foundation and NASA.


News Article | February 24, 2017
Site: spaceref.com

Astronomers have found an enormous, glowing blob of gas in the distant universe, with no obvious source of power for the light it is emitting. Called an "enormous Lyman-alpha nebula" (ELAN), it is the brightest and among the largest of these rare objects, only a handful of which have been observed. ELANs are huge blobs of gas surrounding and extending between galaxies in the intergalactic medium. They are thought to be parts of the network of filaments connecting galaxies in a vast cosmic web. Previously discovered ELANs are likely illuminated by the intense radiation from quasars, but it's not clear what is causing the hydrogen gas in the newly discovered nebula to emit Lyman-alpha radiation (a characteristic wavelength of light absorbed and emitted by hydrogen atoms). The newly discovered nebula was found at a distance of 10 billion light-years in the middle of a region with an extraordinary concentration of galaxies. Researchers found this massive overdensity of early galaxies, called a "protocluster," through a novel survey project led by Zheng Cai, a Hubble Postdoctoral Fellow at UC Santa Cruz. "Our survey was not trying to find nebulae. We're looking for the most overdense environments in the early universe, the big cities where there are lots of galaxies," said Cai. "We found this enormous nebula in the middle of the protocluster, near the peak density." Cai is first author of a paper on the discovery accepted for publication in the Astrophysical Journal and available online. His survey project is called Mapping the Most Massive Overdensities Through Hydrogen (MAMMOTH), and the newly discovered ELAN is known as MAMMOTH-1. Coauthor J. Xavier Prochaska, professor of astronomy and astrophysics at UC Santa Cruz, said previously discovered ELANs have been detected in quasar surveys. In those cases, the intense radiation from a quasar illuminated hydrogen gas in the nebula, causing it to emit Lyman-alpha radiation. Prochaska's team discovered the first ELAN, dubbed the "Slug Nebula," in 2014. MAMMOTH-1 is the first one not associated with a visible quasar, he said. "It's extremely bright, and it's probably larger than the Slug Nebula, but there's nothing else visible except the faint smudge of a galaxy. So it's a terrifically energetic phenomenon without an obvious power source," Prochaska said. Equally impressive is the enormous protocluster in which it resides, he said. Protoclusters are the precursors to galaxy clusters, which consist of hundreds to thousands of galaxies bound together by gravity. Because protoclusters are spread out over a much larger area of the sky, they are much harder to find than galaxy clusters. The protocluster hosting the MAMMOTH-1 nebula is massive, with an unusually high concentration of galaxies in an area about 50 million light-years across. Because it is so far away (10 billion light-years), astronomers are in effect looking back in time to see the protocluster as it was 10 billion years ago, or about 3 billion years after the big bang, during the peak epoch of galaxy formation. After evolving for 10 billion more years, this protocluster would today be a mature galaxy cluster perhaps only one million light-years across, having collapsed down to a much smaller area, Prochaska said. The standard cosmological model of structure formation in the universe predicts that galaxies are embedded in a cosmic web of matter, most of which is invisible dark matter. The gas that collapses to form galaxies and stars traces the distribution of dark matter and extends beyond the galaxies along the filaments of the cosmic web. The MAMMOTH-1 nebula appears to have a filamentary structure that aligns with the galaxy distribution in the large-scale structure of the protocluster, supporting the idea that ELANs are illuminated segments of the cosmic web, Cai said. "From the distribution of galaxies we can infer where the filaments of the cosmic web are, and the nebula is perfectly aligned with that structure," he said. Cai and his coauthors considered several possible mechanisms that could be powering the Lyman-alpha emission from the nebula. The most likely explanations involve radiation or outflows from an active galactic nucleus (AGN) that is strongly obscured by dust so that only a faint source can be seen associated with the nebula. An AGN is powered by a supermassive black hole actively feeding on gas in the center of a galaxy, and it is usually an extremely bright source of light (quasars being the most luminous AGNs in visible light). The intense radiation from an AGN can ionize the gas around it (called photoionization), and this may be one mechanism at work in MAMMOTH-1. When ionized hydrogen in the nebula recombines it would emit Lyman-alpha radiation. Another possible mechanism powering the Lyman-alpha emissions is shock heating by a powerful outflow of gas from the AGN. The researchers described several lines of evidence supporting the existence of a hidden AGN energizing the nebula, including the dynamics of the gas and emissions from other elements besides hydrogen, notably helium and carbon. "It has all the hallmarks of an AGN, but we don't see anything in our optical images. I expect there's a quasar that is so obscured by dust that most of its light is hidden," Prochaska said. * "Discovery of an Enormous Ly-alpha Nebula in a Massive Galaxy Overdensity at z = 2.3," Zheng Cai et al., 2017, to appear in the Astrophysical Journal [http://apj.aas.org, preprint: https://arxiv.org/abs/1609.04021]. * "MApping the Most Massive Overdensities Through Hydrogen (MAMMOTH) I: Methodology," Zheng Cai et al., 2016 Dec. 20, Astrophysical Journal [http://iopscience.iop.org/article/10.3847/1538-4357/833/2/135 , preprint: https://arxiv.org/abs/1512.06859]. In addition to Cai and Prochaska at UC Santa Cruz, the team includes coauthors at Steward Observatory, University of Arizona; Korea Astronomy and Space Institute; Mount Stromlo Observatory, Australia; Pontifical Catholic University of Chile; Institute for Astronomy, ETH Zurich; California Institute of Technology; Kavli Institute for Astronomy and Astrophysics, Peking University; and National Astronomical Observatory of Japan. This research was supported by the National Science Foundation and NASA. Please follow SpaceRef on Twitter and Like us on Facebook.


Szabo R.,Hungarian Academy of Sciences | Kollath Z.,Hungarian Academy of Sciences | Molnar L.,Hungarian Academy of Sciences | Kolenberg K.,University of Vienna | And 14 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2010

The first detection of the period doubling phenomenon is reported in the Kepler RR Lyrae stars RR Lyr, V808 Cyg and V355 Lyr. Interestingly, all these pulsating stars show Blazhko modulation. The period doubling manifests itself as alternating maxima and minima of the pulsational cycles in the light curve, as well as through the appearance of half-integer frequencies located halfway between the main pulsation period and its harmonics in the frequency spectrum. The effect was found to be stronger during certain phases of the modulation cycle. We were able to reproduce the period-doubling bifurcation in our non-linear RR Lyrae models computed by the Florida-Budapest hydrocode. This enabled us to trace the origin of this instability in RR Lyrae stars to a resonance, namely a 9:2 resonance between the fundamental mode and a high-order (ninth) radial overtone showing strange-mode characteristics. We discuss the connection of this new type of variation to the mysterious Blazhko effect and argue that it may give us fresh insights into solving this century-old enigma. © 2010 The Authors. Journal compilation © 2010 RAS.


Bianchi L.,Johns Hopkins University | Kang Y.,Daejeon University | Kang Y.,Korea Astronomy and Space Institute | Hodge P.,University of Washington | And 2 more authors.
Advances in Space Research | Year: 2014

We discuss the relevance of UV data in the detection and characterization of hot massive stars and young stellar populations in galaxies. We show results from recent extensive surveys in M31 and M33 with Hubble Space Telescope (HST) multi-wavelength data including UV filters, which imaged several regions at a linear resolution (projected) of less than half a pc in these galaxies, and from GALEX far-UV and near-UV wide-field, low-resolution imaging of the entire galaxies. Both datasets allow us to study the hierarchical structure of star formation: the youngest stellar groups are the most compact, and are often arranged within broader, sparser structures. The derived recent star-formation rates are rather similar for the two galaxies, when scaled for the respective areas. We show how uncertainties in metallicity and type of selective extinction for the internal reddening may affect the results, and how an appropriate complement of UV filters could reduce such uncertainties, and significantly alleviate some parameter degeneracies. © 2013 The Authors. Published by Elsevier Ltd.


Kim C.-H.,Chungbuk National University | Song M.-H.,Chungbuk National University | Song M.-H.,Korea Astronomy and Space Institute | Yoon J.-N.,Chungbuk National University | And 3 more authors.
Astrophysical Journal | Year: 2014

A photometric study of BD And was made through the analysis of two sets of new BVR light curves. The light curves with migrating photometric waves outside eclipse show that BD And is a short-period RS CVn-type binary star. The analysis of all available timings reveals that the orbital period has varied in a strictly cyclical way with a period of 9.2 yr. The periodic variation most likely arises from the light-time effect due to a tertiary moving in a highly elliptical orbit (e 3= 0.76). The Applegate mechanism could not operate properly in the eclipsing pair. The light curves were modeled with two large spots on the hotter star and a large third light amounting to about 14% of the total systemic light. BD And is a triple system: a detached binary system consisting of two nearly equal solar-type stars with an active primary star and a G6-G7 tertiary dwarf. The absolute dimensions of the eclipsing pair and tertiary components were determined. The three components with a mean age of about 5.8 Gyr are located at midpositions in main-sequence bands. The radius of the secondary is about 17% larger than that deduced from stellar models. The orbital and radiometric characteristics of the tertiary are intensively investigated. One important feature is that the mutual inclination between two orbits is larger than 60°, implying that Kozai cycles had occurred very efficiently in the past. The possible past and future evolutions of the BD And system, driven by KCTF and MBTF, are also discussed. © 2014. The American Astronomical Society. All rights reserved..


Hachisuka K.,Yamaguchi University | Hachisuka K.,Chinese Academy of Sciences | Hachisuka K.,Ibaraki University | Choi Y.K.,Korea Astronomy and Space Institute | And 6 more authors.
Astrophysical Journal Letters | Year: 2015

We report parallaxes and proper motions of three water maser sources in high-mass star-forming regions in the Outer Spiral Arm of the Milky Way. The observations were conducted with the Very Long Baseline Array as part of Bar and Spiral Structure Legacy Survey and double the number of such measurements in the literature. The Outer Arm has a pitch angle of 14.°9 ± 2.°7 and a Galactocentric distance of 14.1 ± 0.6 kpc toward the Galactic anticenter. The average motion of these sources toward the Galactic center is 10.7 ± 2.1 km s-1 and we see no sign of a significant fall in the rotation curve out to 15 kpc from the Galactic center. The three-dimensional locations of these star-forming regions are consistent with a Galactic warp of several hundred parsecs from the plane. © 2015. The American Astronomical Society. All rights reserved.

Loading Korea Astronomy and Space Institute collaborators
Loading Korea Astronomy and Space Institute collaborators