Seoul, South Korea
Seoul, South Korea

Konkuk University is a private university located in Seoul and Chungju. The Seoul campus is located in the southeastern part of Seoul, near the Han River, and is served by a metro station of the same name. The university possesses accreditation from the South Korean Ministry of Culture and Education. The university emphasizes technology and science majors and research. Wikipedia.


Time filter

Source Type

Disclosed are a nanopipette provided with a membrane containing a saturated ion-sensitive material, a method for preparing the same, and an ion measuring apparatus comprising the same.


Patent
Konkuk University and KR Biotech Co. | Date: 2017-02-15

The present invention relates to an anti-influenza virus composition containing a Poncirus trifoliata extract as an active ingredient. The composition of the present invention inhibits influenza virus replication and infection, thereby exhibiting excellent effects in the prevention and treatment of influenza virus infection. The present invention provides a composition for preventing, treating, or alleviating diseases caused by influenza virus.


This invention relates to a novel formaldehyde dehydrogenase expressed by a formaldehyde dehydrogenase gene and having independent reduction activity for formic acid, a method of preparing the formaldehyde dehydrogenase from a strain transformed with a recombinant expression vector including the gene, and a method of producing formaldehyde from formic acid through a reduction reaction of the formaldehyde dehydrogenase.


News Article | May 24, 2017
Site: www.nature.com

In 2009, veterinary ophthalmologist Ron Ofri took a call about a flock of sheep in northern Israel. Some of the lambs were day-blind: they wandered easily at night, but stood motionless when the Sun rose. Ofri, a researcher at the Hebrew University of Jerusalem who has a PhD and a doctorate in veterinary medicine (DVM), examined the sheep. Then he swapped his clinician's hat for his research one, assessing the sheep's retinal function and genome using techniques that he had learnt in graduate school. He and his colleagues then determined that some sheep carry a mutation in the same gene that causes human day-blindness. They successfully tested a gene therapy in sheep, and expect to soon launch human trials. The combination of a clinical and a research focus has been enormously beneficial, Ofri says. “One enriches the other.” Ofri is one of a small group of PhD scientists who have augmented their research training with a professional degree or a master's in another topic — public health, for example, or physical therapy (see 'Mix and match'). Data from the US National Science Foundation show that fewer than 1% of the 261,581 people who were awarded a PhD between 2011 and 2015 also earned a Doctor of Medicine (MD) degree. Even fewer combined a PhD with a dental degree. Obtaining multiple advanced degrees can open career doors and position scientists to act as a bridge between two fields of expertise. A downside, however, is that they can take a long time to complete — seven years or more, in some cases. The degrees are usually done sequentially, but some programmes make it possible to do them concurrently. The costs vary: during a PhD, tuition and stipends are usually covered by an adviser's grant or other sources. But for professional degrees, students tend to pay their own way or have to apply for partial or full fellowships. Combination programmes can help to lower the costs, because they may fully or partially subsidize the clinical training. Furthermore, government schemes will often waive the repayment of loans for those who go on to perform clinical research. Whatever the route, people who successfully complete multiple advanced degrees tend to have clear goals for how they will apply the skills from each, and have the ability to rapidly switch back and forth between the two roles, as Ofri did in his sheep project. But it's not the right course for everyone, says Tim Church, chief medical officer at ACAP Health, a consultancy firm in Dallas, Texas, who has an MD and a PhD. Those mulling over this route, he says, should carefully consider their interest in research and whether the dual degree will lead to a better job. The degrees ended up being a great choice for him, but the cost may not be worth the sacrifices for everyone. For many, the clinical component comes first. In Europe, for example, people wanting to become dentists generally spend five or six years in training directly after finishing secondary school, says Paulo Melo, a PhD dentist at the University of Porto in Portugal and chair of the working group on education and professional qualifications at the Council of European Dentists. They can then train in a speciality such as oral surgery, or pursue a research master's or PhD. The number of people who go on to do the research component varies widely by nation and research field, he says. Liz Kay, founding dean of the Peninsula Dental School at Plymouth University, UK, has earned a clinical degree in dentistry, a Master of Public Health (MPH) and a PhD in clinical decision-making. Now, she runs a master's of business administration programme for health-care workers. She spends one day a week in the clinic and teaches, researches and writes. “I've always tried to wedge open all my options,” Kay says. In the United States, dentistry students typically cannot enrol for a clinical degree, such as a Doctor of Dental Surgery (DDS), until they have done an undergraduate degree. And some universities offer the professional degrees together with a PhD. Professors who train students in such dual-degree programmes say that there's a need for graduates who can change gear with ease. Michael Atchison, director of the veterinary–PhD programme at the University of Pennsylvania School of Veterinary Medicine in Philadelphia, says that his graduates are particularly desirable to pharmaceutical companies, which often struggle to find people who can adapt molecular and cellular data for use in an entire organism, he says. According to a 2013 report by the US National Academy of Sciences (NAS), about one-quarter of the veterinary surgeons in contract research organizations hold PhDs, and they work mostly in safety research. In animal-health companies, about one-third hold PhDs, and they work mainly in clinical research and development. According to a 2007 NAS questionnaire, 24 of 170, or 37%, of company job adverts for full-time vets sought candidates with a PhD and a veterinary degree. The NAS report estimated that an average of 83 North American vets enrolled in a PhD programme each year between 2007 and 2011. Further education is a popular option for vets in Europe. A 2015 survey by the Federation of Veterinarians of Europe found that 21% of veterinary-degree recipients earn a PhD or master's as well. The dual degree may be a requirement for some jobs. Daisuke Ito says that applicants for his job as a medical-science liaison at Bristol-Myers Squibb in Fukuoka, Japan, were required to have both a PhD and an MD or veterinary-medicine degree. Liaisons use their scientific expertise throughout the drug-development process, and maintain relationships between the company and academic physicians. In 2014, Emory School of Medicine partnered up with the Georgia Institute of Technology in Atlanta to offer a combined PhD and doctor of physical therapy (DPT) scheme. They, too, expect that the graduates will fill a niche, not least because one-fifth of the US population has a disability, according to the US Centers for Disease Control and Prevention. “There's a growing recognition about the need for robust rehabilitation science and researchers,” says programme director Edelle Field-Fote. Hiring committees may feel that having a PhD shows that a candidate has proven their ability to complete a complex project, says veterinary microbiologist Patrick Butaye of Ross University in Basseterre, West Indies. Butaye earned his veterinary degree at the University of Ghent in Belgium, where the six-year programme includes both undergraduate and graduate course work. He then got a PhD from the university, and now holds an associate appointment there. The system is similar in South Korea, says Jong Hyuk Kim, a cancer researcher at the University of Minnesota in Minneapolis. Kim wanted to know more about the diseases he'd been trained to treat during his six-year veterinary programme at Konkuk University in Seoul. So, in his final semester, he took some pathology courses that would count for credit in a PhD programme, and enrolled in that PhD course immediately after completing his veterinary degree. He estimates that about 10% of his classmates did so, too. Both Butaye and Kim note that their PhDs made it easier for them to find work abroad. Most countries allow people to work for two advanced degrees sequentially, but truly dual programmes seem to be concentrated in the United States. Yet even there, they are rare. About 120 US universities offer MD–PhD programmes, 15 have vet–PhD courses and around a dozen have PhD–DDS combinations. Dual programmes appeal most to students with a strong educational drive and clear goals. Osefame Ewaleifoh, for instance, was interested in combining tightly focused neurovirology questions with a wide view of public health. That brought him to the PhD–MPH programme at the Driskill Graduate Program in the Life Sciences at Northwestern University Feinberg School of Medicine in Chicago, Illinois. In his PhD lab, he studies the brain's protections against viral invasion; in his public-health work, he's implementing education for refugees to improve long-term health outcomes. Of course, joint programmes can be costly. At the University of Buffalo in New York, Erik Hefti is the first student to embark on a combined PhD–doctor of pharmacy course. He took out loans for his pharmacy degree. Now doing the PhD component, he works nights in a hospital pharmacy so that he can pay off those loans before they accumulate too much interest. For those who pay their own way through a professional course, the addition of a PhD can help to cut down on the debt. Church says that he owed nearly US$300,000 — mostly from the MD — by the time he'd finished medical school, a PhD and an MPH course. But because he went on to perform clinical research, government programmes helped Church to pay it off within ten years. Even if a university doesn't offer a specific dual programme, students may be able to design their own, says Steven Anderson, associate director for the Driskill programme, which now allows PhD students to pursue an MPH or a Master of Science in Clinical Investigation (MSCI), after a few students did so on their own. Eric Skaar was the first PhD student to do this. He was interested in molecular epidemiology, and hoped that the master's would position him for jobs investigating disease outbreaks. At first, the university wasn't eager to let him enrol in the MPH, which at the time was meant only for medical students. But by promising that it would enhance his PhD, not distract from it, he found faculty support. Skaar set rules with himself and his PhD adviser — that he'd be a research student until evening, when he attended his public-health classes. He aligned his two courses with a PhD dissertation on how the bacterium that causes gonorrhoea evades the immune system, and a public-health thesis on the epidemiology of the sexually transmitted infection. He never did become an outbreak investigator, but is now director of the division of molecular pathogenesis at Vanderbilt University School of Medicine in Nashville, Tennessee. Thanks to the MPH, he can approach his work on hospital infections with an epidemiological background. Students who want to create an ad hoc joint degree should be prepared to hack through plenty of bureaucratic red tape, warns Anderson. Particularly if the degrees are administered by different schools within an institution, basic issues such as tuition and class registration can be tricky. In fact, he's not sure what form Driskill's MPH option will take in the future, because he's working out how to manage the tuition. The multiple-degree path is mentally tricky, too. Ofri notes that people in his clinic don't understand why he spends so much time in the lab, and his students wonder why he's always in the clinic. It's near-impossible to maintain a perfect 50–50 split, says Jaime Modiano, a graduate of the Penn vet–PhD course and now director of the Animal Cancer Care and Research Program at the University of Minnesota in Minneapolis and in St Paul. He decided to forego taking the veterinary board exam, opting for a research postdoc instead. Butaye made a similar decision: he researches antibiotic resistance in microbes. But he appreciates the veterinary degree for giving him the flexibility to work in multiple species. The balancing act is especially challenging for students during dual-degree programmes. “You have to be able to manage these two very different things you're doing at the same time,” says Modiano. In veterinary classes, he had to memorize and integrate masses of information, then apply it immediately to treat animals. In research, he had to find the information himself and integrate it to spur future discoveries. “People who are successful are highly adaptable,” he says.


News Article | April 17, 2017
Site: www.cemag.us

An eco-friendly method to synthesize DNA-copper nanoflowers with high load efficiencies, low cytotoxicity, and strong resistance against nucleases has been developed by Professor Hyun Gyu Park and his collaborators in the Korea Advanced Institute of Science and Technology’s (KAIST) Department of Chemical and Biomolecular Engineering. The research team successfully formed a flower-shaped nanostructure in an eco-friendly condition by using interactions between copper ions and DNA containing amide and amine groups. The resulting nanoflowers exhibit high DNA loading capacities in addition to low cytotoxicity. Flower-shaped nanocrystals called nanoflowers have gained attention for their distinct features of high surface roughness and high surface area to volume ratios. The nanoflowers have been used in many areas including catalysis, electronics, and analytical chemistry. Of late, research breakthroughs were made in the generation of hybrid inorganic-organic nanoflowers containing various enzymes as organic components. The hybridization with inorganic materials greatly enhanced enzymatic activity, stability, and durability compared to the corresponding free enzymes. Generally, the formation of protein nanocrystals requires high heat treatment so it has limitations for achieving the high loading capacities of intact DNA. The research team addressed the issue, focusing on the fact that nucleic acids with well-defined structures and selective recognition properties also contain amide and amine groups in their nucleobases. They proved that flower-like structures could be formed by using nucleic acids as a synthetic template, which paved the way to synthesize the hybrid nanoflowers containing DNA as an organic component in an eco-friendly condition. The team also confirmed that this synthetic method can be universally applied to any DNA sequences containing amide and amine groups. They said their approach is quite unique considering that the majority of previous works focused on the utilization of DNA as a linker to assemble the nanomaterials. They said the method has several advantageous features. First, the “green” synthetic procedure doesn’t involve any toxic chemicals, and shows low cytotoxicity and strong resistance against nucleases. Second, the obtained nanoflowers exhibit exceptionally high DNA loading capacities. Above all, such superior features of hybrid nanoflowers enabled the sensitive detection of various molecules including phenol, hydrogen peroxide, and glucose. DNA-copper nanoflowers showed even higher peroxidase activity than those of protein-copper nanoflowers, which may be due to the larger surface area of the flower- shaped structures, creating a greater chance for applying them in the field of sensing of detection of hydrogen peroxide. The research team expects that their research will create diverse applications in many areas including biosensors and will be further applied into therapeutic applications. Park says, “The inorganic component in the hybrid nanoflowers not only exhibits low cytotoxicity, but also protects the encapsulated DNA from being cleaved by endonuclease enzymes. Using this feature, the nanostructure will be applied into developing gene therapeutic carriers.” This research was co-led by Professor Moon Il Kim at Gachon University and KAIST graduate Ki Soo Park, currently a professor at Konkuk University, is the first author. The research was featured as the front cover article of the Journal of Materials Chemistry B on March 28, Issue 12, published by the Royal Society of Chemistry. The research was funded by the Mid-Career Researcher Support Program of the National Research Foundation of Korea and the Global Frontier Project of the Ministry of Science, ICT & Future Planning.


News Article | April 17, 2017
Site: www.eurekalert.org

An eco-friendly method to synthesize DNA-copper nanoflowers with high load efficiencies, low cytotoxicity, and strong resistance against nucleases has been developed by Professor Hyun Gyu Park in the Department of Chemical and Biomolecular Engineering and his collaborators. The research team successfully formed a flower-shaped nanostructure in an eco-friendly condition by using interactions between copper ions and DNA containing amide and amine groups. The resulting nanoflowers exhibit high DNA loading capacities in addition to low cytotoxicity. Flower-shaped nanocrystals called nanoflowers have gained attention for their distinct features of high surface roughness and high surface area to volume ratios. The nanoflowers have been used in many areas including catalysis, electronics, and analytical chemistry. Of late, research breakthroughs were made in the generation of hybrid inorganic-organic nanoflowers containing various enzymes as organic components. The hybridization with inorganic materials greatly enhanced enzymatic activity, stability, and durability compared to the corresponding free enzymes. Generally, the formation of protein nanocrystals requires high heat treatment so it has limitations for achieving the high loading capacities of intact DNA. The research team addressed the issue, focusing on the fact that nucleic acids with well-defined structures and selective recognition properties also contain amide and amine groups in their nucleobases. They proved that flower-like structures could be formed by using nucleic acids as a synthetic template, which paved the way to synthesize the hybrid nanoflowers containing DNA as an organic component in an eco-friendly condition. The team also confirmed that this synthetic method can be universally applied to any DNA sequences containing amide and amine groups. They said their approach is quite unique considering that the majority of previous works focused on the utilization of DNA as a linker to assemble the nanomaterials. They said the method has several advantageous features. First, the 'green' synthetic procedure doesn't involve any toxic chemicals, and shows low cytotoxicity and strong resistance against nucleases. Second, the obtained nanoflowers exhibit exceptionally high DNA loading capacities. Above all, such superior features of hybrid nanoflowers enabled the sensitive detection of various molecules including phenol, hydrogen peroxide, and glucose. DNA-copper nanoflowers showed even higher peroxidase activity than those of protein-copper nanoflowers, which may be due to the larger surface area of the flower- shaped structures, creating a greater chance for applying them in the field of sensing of detection of hydrogen peroxide. The research team expects that their research will create diverse applications in many areas including biosensors and will be further applied into therapeutic applications. Professor Park said, "The inorganic component in the hybrid nanoflowers not only exhibits low cytotoxicity, but also protects the encapsulated DNA from being cleaved by endonuclease enzymes. Using this feature, the nanostructure will be applied into developing gene therapeutic carriers." This research was co-led by Professor Moon Il Kim at Gachon University and KAIST graduate Ki Soo Park, currently a professor at Konkuk University, is the first author. The research was featured as the front cover article of the Journal of Materials Chemistry B on March 28, Issue 12, published by the Royal Society of Chemistry. The research was funded by the Mid-Career Researcher Support Program of the National Research Foundation of Korea and the Global Frontier Project of the Ministry of Science, ICT & Future Planning.


Patent
Samsung and Konkuk University | Date: 2016-03-08

Provided are pixel circuits using organic light emitting diodes (OLEDs) and a driving method thereof, and an organic light emitting display including the pixel circuits. The OLED is driven to emit light by a drive transistor generating a drive current compensated with respect to a threshold voltage difference and mobility deviation. The drive transistor may receive reference voltage and data signals in response to separate scan signals supplied to the pixel circuits via different scan lines. As a result, a threshold voltage compensation time, which may include the time during which a reference voltage is supplied to the drive transistor in response to a particular scan signal, may be set long enough regardless of a time during which the data signal is supplied to the pixel circuits located in respective rows of the organic light emitting display in response to a separate scan signal.


There is provided a CMP-acetylneuraminic acid hydroxylase targeting vector, a transgenic animal for xenotransplantation introduced with the vector, and a method of manufacturing the same.


Patent
Amogreentech co. and Konkuk University | Date: 2016-06-23

This disclosure provides for a three-dimensional (3D) microenvironment presenting defined physical or mechanical cues that regulate cellular behavior and use of the matrix. The disclosure also provides for devices and methods for screening for optimal combinations of physical and mechanical cues in order to create a microenvironment that can regulate specific cellular behavior such as cell growth, proliferation, migration or differentiation.


Patent
Konkuk University | Date: 2016-06-29

The present disclosure relates to a MoS_(2) thin film and a method for manufacturing the same. The present disclosure provides a MoS_(2) thin film and a method for manufacturing the same using an atomic layer deposition method. In particular, the MoS_(2) thin film is manufactured by an atomic layer deposition method without using a toxic gas such as H_(2)S as a sulfur precursor. Thus, the present disclosure is eco-friendly. Furthermore, it is possible to prevent the damage and contamination of manufacturing equipment during the manufacturing process. In addition, it is possible to manufacture the MoS_(2) thin film by precisely controlling the thickness of the MoS_(2) thin film to the level of an atomic layer.

Loading Konkuk University collaborators
Loading Konkuk University collaborators