Konkoly Observatory

Budapest, Hungary

Konkoly Observatory

Budapest, Hungary

Time filter

Source Type

News Article | May 18, 2017
Site: www.sciencedaily.com

The combined power of three space observatories, including NASA's Hubble Space Telescope, has helped astronomers uncover a moon orbiting the third largest dwarf planet, catalogued as 2007 OR10. The pair resides in the frigid outskirts of our solar system called the Kuiper Belt, a realm of icy debris left over from our solar system's formation 4.6 billion years ago. With this discovery, most of the known dwarf planets in the Kuiper Belt larger than 600 miles across have companions. These bodies provide insight into how moons formed in the young solar system. "The discovery of satellites around all of the known large dwarf planets -- except for Sedna -- means that at the time these bodies formed billions of years ago, collisions must have been more frequent, and that's a constraint on the formation models," said Csaba Kiss of the Konkoly Observatory in Budapest, Hungary. He is the lead author of the science paper announcing the moon's discovery. "If there were frequent collisions, then it was quite easy to form these satellites." The objects most likely slammed into each other more often because they inhabited a crowded region. "There must have been a fairly high density of objects, and some of them were massive bodies that were perturbing the orbits of smaller bodies," said team member John Stansberry of the Space Telescope Science Institute in Baltimore, Maryland. "This gravitational stirring may have nudged the bodies out of their orbits and increased their relative velocities, which may have resulted in collisions." But the speed of the colliding objects could not have been too fast or too slow, according to the astronomers. If the impact velocity was too fast, the smash-up would have created lots of debris that could have escaped from the system; too slow and the collision would have produced only an impact crater. Collisions in the asteroid belt, for example, are destructive because objects are traveling fast when they smash together. The asteroid belt is a region of rocky debris between the orbits of Mars and the gas giant Jupiter. Jupiter's powerful gravity speeds up the orbits of asteroids, generating violent impacts. The team uncovered the moon in archival images of 2007 OR10 taken by Hubble's Wide Field Camera 3. Observations taken of the dwarf planet by NASA's Kepler Space Telescope first tipped off the astronomers of the possibility of a moon circling it. Kepler revealed that 2007 OR10 has a slow rotation period of 45 hours. "Typical rotation periods for Kuiper Belt Objects are under 24 hours," Kiss said. "We looked in the Hubble archive because the slower rotation period could have been caused by the gravitational tug of a moon. The initial investigator missed the moon in the Hubble images because it is very faint." The astronomers spotted the moon in two separate Hubble observations spaced a year apart. The images show that the moon is gravitationally bound to 2007 OR10 because it moves with the dwarf planet, as seen against a background of stars. However, the two observations did not provide enough information for the astronomers to determine an orbit. "Ironically, because we don't know the orbit, the link between the satellite and the slow rotation rate is unclear," Stansberry said. The astronomers calculated the diameters of both objects based on observations in far-infrared light by the Herschel Space Observatory, which measured the thermal emission of the distant worlds. The dwarf planet is about 950 miles across, and the moon is estimated to be 150 miles to 250 miles in diameter. 2007 OR10, like Pluto, follows an eccentric orbit, but it is currently three times farther than Pluto is from the sun. 2007 OR10 is a member of an exclusive club of nine dwarf planets. Of those bodies, only Pluto and Eris are larger than 2007 OR10. It was discovered in 2007 by astronomers Meg Schwamb, Mike Brown, and David Rabinowitz as part of a survey to search for distant solar system bodies using the Samuel Oschin Telescope at the Palomar Observatory in California. The team's results appeared in The Astrophysical Journal Letters.


Astronomers have discovered a moon orbiting the third largest dwarf planet catalogued as 2007 OR10. Nasa's Hubble telescope and two other space observatories helped astronomers spot the duo, which reside in a freezing area on the outskirts of our solar system, called the Kuiper Belt that Nasa describes as "a realm of icy debris left over from our solar system's formation 4.6 billion years ago." This discovery adds to the fact that most of the dwarf planets in the Kuiper Belt "larger than 600 miles across" have companions. Nasa said that the existence of these space bodies "provide insight into how moons formed in the young solar system." Trending: First mass extinction: Supervolcano bigger than Yellowstone and Toba almost wiped out all life "The discovery of satellites around all of the known large dwarf planets - except for Sedna - means that at the time these bodies formed billions of years ago, collisions must have been more frequent, and that's a constraint on the formation models," Csaba Kiss of the Konkoly Observatory in Budapest, the lead author of the paper announcing the discovery of the moon, said in a statement. "If there were frequent collisions, then it was quite easy to form these satellites." The bodies inhabiting the Kuiper Belt likely slammed into each other given how crowded the region is, Nasa said. "There must have been a fairly high density of objects, and some of them were massive bodies that were perturbing the orbits of smaller bodies," John Stansberry of the Space Telescope Science Institute in Baltimore, Maryland said. "This gravitational stirring may have nudged the bodies out of their orbits and increased their relative velocities, which may have resulted in collisions." Don't miss: Under the Pole: Divers explore depths of the Arctic to study sharks and glow-in-the-dark species However, astronomers believe that the speed of the colliding objects couldn't have been either too fast or too slow. If the collision speed was too fast, it would have resulted in tons of debris that could have escaped from the system. On the other hand, if the collision speed was too slow, it would only have produced an impact crater. Most popular: Infertility: 100-year-old technique of 'tube flushing' increases chances of pregnancy without IVF According to Nasa, 2007 OR10 is one among "an exclusive club of nine dwarf planets" and was discovered in 2007 by astronomers Meg Schwamb, Mike Brown, and David Rabinowitz, who stumbled onto the body during a survey, searching for distant solar system bodies. How was the moon found? Astronomers found the moon in the dwarf planet's archival images, which were taken by Hubble's Wide Field Camera 3. However, the astronomers were first tipped off about the moon's existence by Nasa's Kepler telescope's observations of 2007 OR10. Kepler's observations revealed that the dwarf planet has a slow rotation period of 45 hours. "Typical rotation periods for Kuiper Belt Objects are under 24 hours," Kiss said. "We looked in the Hubble archive because the slower rotation period could have been caused by the gravitational tug of a moon. The initial investigator missed the moon in the Hubble images because it is very faint." The moon was spotted in two separate Hubble images that were taken a year apart, which revealed that the moon is gravitationally bound to the dwarf planet "because it moves with the dwarf planet, as seen against a background of stars." You may be interested in:


News Article | May 18, 2017
Site: phys.org

With this discovery, most of the known dwarf planets in the Kuiper Belt larger than 600 miles across have companions. These bodies provide insight into how moons formed in the young solar system. "The discovery of satellites around all of the known large dwarf planets - except for Sedna - means that at the time these bodies formed billions of years ago, collisions must have been more frequent, and that's a constraint on the formation models," said Csaba Kiss of the Konkoly Observatory in Budapest, Hungary. He is the lead author of the science paper announcing the moon's discovery. "If there were frequent collisions, then it was quite easy to form these satellites." The objects most likely slammed into each other more often because they inhabited a crowded region. "There must have been a fairly high density of objects, and some of them were massive bodies that were perturbing the orbits of smaller bodies," said team member John Stansberry of the Space Telescope Science Institute in Baltimore, Maryland. "This gravitational stirring may have nudged the bodies out of their orbits and increased their relative velocities, which may have resulted in collisions." But the speed of the colliding objects could not have been too fast or too slow, according to the astronomers. If the impact velocity was too fast, the smash-up would have created lots of debris that could have escaped from the system; too slow and the collision would have produced only an impact crater. Collisions in the asteroid belt, for example, are destructive because objects are traveling fast when they smash together. The asteroid belt is a region of rocky debris between the orbits of Mars and the gas giant Jupiter. Jupiter's powerful gravity speeds up the orbits of asteroids, generating violent impacts. The team uncovered the moon in archival images of 2007 OR10 taken by Hubble's Wide Field Camera 3. Observations taken of the dwarf planet by NASA's Kepler Space Telescope first tipped off the astronomers of the possibility of a moon circling it. Kepler revealed that 2007 OR10 has a slow rotation period of 45 hours. "Typical rotation periods for Kuiper Belt Objects are under 24 hours," Kiss said. "We looked in the Hubble archive because the slower rotation period could have been caused by the gravitational tug of a moon. The initial investigator missed the moon in the Hubble images because it is very faint." The astronomers spotted the moon in two separate Hubble observations spaced a year apart. The images show that the moon is gravitationally bound to 2007 OR10 because it moves with the dwarf planet, as seen against a background of stars. However, the two observations did not provide enough information for the astronomers to determine an orbit. "Ironically, because we don't know the orbit, the link between the satellite and the slow rotation rate is unclear," Stansberry said. The astronomers calculated the diameters of both objects based on observations in far-infrared light by the Herschel Space Observatory, which measured the thermal emission of the distant worlds. The dwarf planet is about 950 miles across, and the moon is estimated to be 150 miles to 250 miles in diameter. 2007 OR10, like Pluto, follows an eccentric orbit, but it is currently three times farther than Pluto is from the sun. 2007 OR10 is a member of an exclusive club of nine dwarf planets. Of those bodies, only Pluto and Eris are larger than 2007 OR10. It was discovered in 2007 by astronomers Meg Schwamb, Mike Brown, and David Rabinowitz as part of a survey to search for distant solar system bodies using the Samuel Oschin Telescope at the Palomar Observatory in California. The team's results appeared in The Astrophysical Journal Letters. The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. Explore further: 2007 OR10 is the largest unnamed dwarf planet in the solar system More information: "Discovery of a Satellite of the Large Trans-Neptunian Object (225088) 2007 OR10," Csaba Kiss et al., 2017 Mar. 20, Astrophysical Journal Letters iopscience.iop.org/article/10.3847/2041-8213/aa6484 , arxiv.org/abs/1703.01407


News Article | May 18, 2017
Site: www.eurekalert.org

The combined power of three space observatories, including NASA's Hubble Space Telescope, has helped astronomers uncover a moon orbiting the third largest dwarf planet, catalogued as 2007 OR10. The pair resides in the frigid outskirts of our solar system called the Kuiper Belt, a realm of icy debris left over from our solar system's formation 4.6 billion years ago. With this discovery, most of the known dwarf planets in the Kuiper Belt larger than 600 miles across have companions. These bodies provide insight into how moons formed in the young solar system. "The discovery of satellites around all of the known large dwarf planets - except for Sedna - means that at the time these bodies formed billions of years ago, collisions must have been more frequent, and that's a constraint on the formation models," said Csaba Kiss of the Konkoly Observatory in Budapest, Hungary. He is the lead author of the science paper announcing the moon's discovery. "If there were frequent collisions, then it was quite easy to form these satellites." The objects most likely slammed into each other more often because they inhabited a crowded region. "There must have been a fairly high density of objects, and some of them were massive bodies that were perturbing the orbits of smaller bodies," said team member John Stansberry of the Space Telescope Science Institute in Baltimore, Maryland. "This gravitational stirring may have nudged the bodies out of their orbits and increased their relative velocities, which may have resulted in collisions." But the speed of the colliding objects could not have been too fast or too slow, according to the astronomers. If the impact velocity was too fast, the smash-up would have created lots of debris that could have escaped from the system; too slow and the collision would have produced only an impact crater. Collisions in the asteroid belt, for example, are destructive because objects are traveling fast when they smash together. The asteroid belt is a region of rocky debris between the orbits of Mars and the gas giant Jupiter. Jupiter's powerful gravity speeds up the orbits of asteroids, generating violent impacts. The team uncovered the moon in archival images of 2007 OR10 taken by Hubble's Wide Field Camera 3. Observations taken of the dwarf planet by NASA's Kepler Space Telescope first tipped off the astronomers of the possibility of a moon circling it. Kepler revealed that 2007 OR10 has a slow rotation period of 45 hours. "Typical rotation periods for Kuiper Belt Objects are under 24 hours," Kiss said. "We looked in the Hubble archive because the slower rotation period could have been caused by the gravitational tug of a moon. The initial investigator missed the moon in the Hubble images because it is very faint." The astronomers spotted the moon in two separate Hubble observations spaced a year apart. The images show that the moon is gravitationally bound to 2007 OR10 because it moves with the dwarf planet, as seen against a background of stars. However, the two observations did not provide enough information for the astronomers to determine an orbit. "Ironically, because we don't know the orbit, the link between the satellite and the slow rotation rate is unclear," Stansberry said. The astronomers calculated the diameters of both objects based on observations in far-infrared light by the Herschel Space Observatory, which measured the thermal emission of the distant worlds. The dwarf planet is about 950 miles across, and the moon is estimated to be 150 miles to 250 miles in diameter. 2007 OR10, like Pluto, follows an eccentric orbit, but it is currently three times farther than Pluto is from the sun. 2007 OR10 is a member of an exclusive club of nine dwarf planets. Of those bodies, only Pluto and Eris are larger than 2007 OR10. It was discovered in 2007 by astronomers Meg Schwamb, Mike Brown, and David Rabinowitz as part of a survey to search for distant solar system bodies using the Samuel Oschin Telescope at the Palomar Observatory in California. The team's results appeared in The Astrophysical Journal Letters. The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. For images and more information about the study and Hubble, visit:


New planets are born in the universe every second. The most interesting ones are those similar to Earth, especially if they have the possibility to harbor life. Until a few decades ago, only estimates and model predictions were available to outline where and how habitable planets or uninhabitable planets are born. Nowadays, thanks to the largest telescopes, the situation is different: Astronomers can glimpse the details of star and planet formation and are learning more about the circumstances of their birth. Important advances have been made in this field by a team coordinated by Hungarian researchers. The latest issue of the Astrophysical Journal published an article by Ágnes Kóspál and collaborators, in which they study the young star V346 Nor and its environment. V346 Nor is a protostar only a few hundred thousand years old of 0.1 solar mass, but it is still growing. It is possible that planets are currently forming around it. It is an ideal target for analyzing what factors determine the properties of the forming planets and their surroundings. For this, it is important to know the composition, temperature, and grain size of the disk where the planets are growing. The outer part of the system consists of a large, tenuous envelope from which gas and dust flows towards the center. In the middle, there is a flattened disk, where the newborn star captures material from the inner edge of the disk. The outer part of the disk is being replenished by the infalling envelope. The rate of this latter flow was measured precisely by the Hungarian-led team for the first time, and turns out to be about a millionth solar mass (or two Earth masses) per year. The largest telescope to capture the smallest details The ALMA (Atacama Large Millimeter/Submillimeter Array) radio antenna system is located in the dry Atacama Desert at an elevation of 5000 meters above sea level. When complete, it will consist of 66 radio telescopes with 12 and 7 meter diameter dishes, most of which are already in place and operational. The instrument can detect electromagnetic radiation from the sky with wavelengths between 350 micrometers and 3 millimeters. This spectral range enables the study of the densest parts of star-forming regions and the environment of young stars, which are unobservable in optical light. Experts from the Research Centre for Astronomy and Earth Sciences of the Hungarian Academy of Sciences took images of the young star V346 Nor and its environment at a spatial resolution of one arcsecond and analyzed the structure and movement of the gaseous material. The target is a young eruptive object, a pre-main-sequence star that is still growing by capturing material from its surroundings. The energy output of such objects varies with time, depending on the actual flow of material from the disk onto the star. Due to the uneven transport of material, sometimes spectacular eruptions happen. During these times, the disk heats up and its material is transformed as the dust grains crystallize, as the Hungarian researchers discovered a few years ago. Although many details are uncertain in this process, Ágnes Kóspál and her colleagues identified and studied an even less well-known phenomenon in the system. We know that the disk gives material to the protostar, but how the disk receives material from the surrounding diffuse envelope has been unknown. The infall rate onto the disk is much higher than the rate from the disk onto the star, so the disk retains the material for a while. The disk-to-star mass transport is usually quite slow, and it increases only occasionally, when it causes a brightening. The Hungarian researchers demonstrated quantitatively for the first time how much material falls from the envelope onto the disk, where it accumulates and falls onto the star at an uneven rate. The researchers mapped the location and movement of the disk material using measurements of the spectral line of the carbon monoxide molecule and the 1.3 millimeter emission of the dust. The gas and dust is the densest in the central 350 AU region around the central star. Here, the rotational movement of the disk material is determined by the gravitational field of the central star. Further out, there is a flattened, disk-like structure, a so-called pseudo-disk, whose movement is a combination of infall and rotation, conserving the angular momentum of the surrounding envelope. According to the new ALMA measurements, the pseudo-disk receives two Earth masses of material every year, which is significantly larger than the mass collection rate of the central protostar. The observations give the first direct evidence that the eruptions of such young stellar objects happen when so much material accumulates in the inner disk that it becomes unstable and the mass flow to the star becomes much faster for a while. "This is the first direct measurement of a mismatch between the envelope-to-disk and the disk-to-star mass flow in a young eruptive star," says Ágnes Kóspál. The Hungarian-led international group took advantage of the unprecedented spatial resolution and sensitivity of ALMA in their discovery. The background knowledge for the study was in large part supplied by the MTA CSFK Disk Research Group, a team that formed in 2014 at the Konkoly Observatory to study the dynamics of circumstellar disks as well as star and planet formation in the ALMA era. This project gave the framework in which the analysis methods were developed for this study. This topic is promising, because the eruptions of young stars are supposed to have a direct effect on the disk material. In the V346 Nor system, there may already be planetesimals that will eventually form exoplanets, although most of them will fall into the star or will be destroyed by the eruptions. In the coming decades, Ágnes Kóspál and her collaborators plan to understand these dynamical disks and shed light on the steps leading to planet formation and the factors influencing it. Explore further: Prebiotic atmosphere discovered on accretion disk of baby star


Buchler J.R.,University of Florida | Kollath Z.,Konkoly Observatory
Astrophysical Journal | Year: 2011

The Blazhko effect is a long-term, generally irregular modulation of the light curves that occurs in a sizeable number of RR Lyrae stars. The physical origin of the effect has been a puzzle ever since its discovery over a hundred years ago. We build here upon the recent observational and theoretical work of Szabó etal. on RRab stars who found with hydrodynamical simulations that the fundamental pulsation mode can get destabilized by a 9:2 resonant interaction with the 9th overtone. Alternating pulsation cycles arise, although these remain periodic, i.e., not modulated as in the observations. Here we use the amplitude equation formalism to study this nonlinear, resonant interaction between the two modes. We show that not only does the fundamental pulsation mode break up into a period-two cycle through the nonlinear, resonant interaction with the overtone, but that the amplitudes are modulated, and that in a broad range of parameters the modulations are irregular as in the observations. This irregular behavior is in fact chaotic and arises from a strange attractor in the dynamics. © 2011. The American Astronomical Society. All rights reserved.


Barcza S.,Konkoly Observatory
Monthly Notices of the Royal Astronomical Society | Year: 2010

A photometric calibration of Kurucz static model atmospheres is used to obtain the following parameters of RR Lyrae stars: variation of stellar angular radius θ, effective temperature Te, gravity ge as a function of phase, interstellar reddening E(Ba v- V) towards the star and atmospheric metallicity M. Photometric and hydrodynamic conditions are given to find the phases of pulsation when the quasi-static atmosphere approximation (QSAA) can be applied. The QSAA is generalized to a non-uniformly moving spherical atmosphere, and the distance d, mass and atmospheric motion are derived from the laws of mass and momentum conservation. To demonstrate the efficiency of the method, the UBV(RI)C photometry of SU Dra was used to derive the following parameters: [M] = -1.60 ± 0.10 dex, equilibrium luminosity Leq equals; 45.9 ± 9.3 L⊙ and Teq = 6813 ± 20 K. © 2010 The Author. Journal compilation © 2010 RAS.


Kollath Z.,Konkoly Observatory
Journal of Physics: Conference Series | Year: 2010

One of the first 'International Dark-sky Parks' in Europe was established at the Zselic Landscape Protection Area in Hungary. A special monitoring program has been carrying on to survey the quality of the night sky using 'Sky Quality Meters' and DSLR cameras. The main conclusion of our measurements is that the local villages have only a minimal effect on the quality of the sky. There are light-domes due to the neighbouring cities only close to the horizon, the main source of obtrusive light is the city of Kaposvár. The anthropogenic component of zenith luminance of the night sky is obtained as the function of the distance from the city centre of Kaposvár. Our data were modelled by radiation transfer calculations. These results can help to draw attention to the energy emitted useless to the space and to protect our nocturnal landscape of nature parks for the next generations. © 2010 IOP Publishing Ltd.


Kollath Z.,Konkoly Observatory | Molnar L.,Konkoly Observatory | Szabo R.,Konkoly Observatory
Monthly Notices of the Royal Astronomical Society | Year: 2011

We investigated period doubling, a well-known phenomenon in dynamical systems, for the first time in RR Lyrae models. These studies provide theoretical background for the recent discovery of period doubling in some Blazhko RR Lyrae stars with the Kepler space telescope. Since period doubling has been observed only in Blazhko-modulated stars so far, the phenomenon can help in understanding the modulation as well. Utilizing the Florida-Budapest turbulent convective hydrodynamical code, we have identified the phenomenon in both radiative and convective models. A period-doubling cascade was also followed up to an eight-period solution, confirming that destabilization of the limit cycle is indeed the underlying phenomenon. Floquet stability roots were calculated to investigate the possible causes and occurrences of the phenomenon. A two-dimensional diagnostic diagram was constructed to illustrate the various resonances between the fundamental mode and the different overtones. Combining the two tools, we confirmed that the period-doubling instability is caused by a 9:2 resonance between the ninth overtone and the fundamental mode. Destabilization of the limit cycle by a resonance of a high-order mode is possible because the overtone is a strange mode. The resonance is found to be strong enough to shift the period of overtone by up to 10 per cent. Our investigations suggest that a more complex interplay of radial (and presumably non-radial) modes could happen in RR Lyrae stars that might have connections with the Blazhko effect as well. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.


Benko J.M.,Konkoly Observatory | Szabo R.,Konkoly Observatory | Paparo M.,Konkoly Observatory
Monthly Notices of the Royal Astronomical Society | Year: 2011

We present an analytical formalism for the description of Blazhko RRLyrae light curves. In this formalism the amplitude and frequency modulations are treated in a manner similar to the theory of electronic signal transmission. We consider monoperiodic RR Lyrae light curves to be carrier waves, and modulate their amplitude (AM), frequency (FM) and phase (PM); as a general case we discuss simultaneous AM and FM. The main advantages of this method are the following: (i) the mathematical formalism naturally explains numerous light-curve characteristics found in the Blazhko RRLyrae stars such as mean brightness variations, complicated envelope curves and non-sinusoidal frequency variations; (ii) our elucidation also explains the properties of the Fourier spectra such as apparent higher order multiplets, amplitude distribution of the sidepeaks, the appearance of the modulation frequency itself and its harmonics. In addition, compared to the traditional methods, our light-curve solutions reduce the number of necessary parameters. This formalism can be applied to any type of modulated light curves, not just to Blazhko RRLyrae star light curves. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.

Loading Konkoly Observatory collaborators
Loading Konkoly Observatory collaborators