Entity

Time filter

Source Type


Otto F.E.L.,University of Oxford | Massey N.,University of Oxford | Van Oldenborgh G.J.,Koninklijk Nederlands Meteorologisch Instituut | Jones R.G.,UK Met Office | Allen M.R.,University of Oxford
Geophysical Research Letters | Year: 2012

In the summer 2010 Western Russia was hit by an extraordinary heat wave, with the region experiencing by far the warmest July since records began. Whether and to what extent this event is attributable to anthropogenic climate change is controversial. Dole et al. (2011) report the 2010 Russian heat wave was "mainly natural in origin" whereas Rahmstorf and Coumou (2011) write that with a probability of 80% "the 2010 July heat record would not have occurred" without the large-scale climate warming since 1980, most of which has been attributed to the anthropogenic increase in greenhouse gas concentrations. The latter explicitly state that their results "contradict those of Dole et al. (2011)." Here we use the results from a large ensemble simulation experiment with an atmospheric general circulation model to show that there is no substantive contradiction between these two papers, in that the same event can be both mostly internally-generated in terms of magnitude and mostly externally-driven in terms of occurrence-probability. The difference in conclusion between these two papers illustrates the importance of specifying precisely what question is being asked in addressing the issue of attribution of individual weather events to external drivers of climate. Copyright 2012 by the American Geophysical Union. Source


Ferrero E.,University of Piemonte Orientale | Mortarini L.,CNR Institute of atmospheric Sciences and Climate | Alessandrini S.,RSE Research on Energy Systems | Lacagnina C.,Koninklijk Nederlands Meteorologisch Instituut
Boundary-Layer Meteorology | Year: 2013

The joint concentration probability density function of two reactive chemical species is modelled using a bivariate Gamma distribution coupled with a three-dimensional fluctuating plume model able to simulate the diffusion and mixing of turbulent plumes. A wind-tunnel experiment (Brown and Bilger, J Fluid Mech 312:373-407, 1996), carried out in homogeneous unbounded turbulence, in which nitrogen oxide is released from a point source in an ozone doped background and the chemical reactions take place in non-equilibrium conditions, is considered as a test case. The model is based on a stochastic Langevin equation reproducing the barycentre position distribution through a proper low-pass filter for the turbulence length scales. While the meandering large-scale motion of the plume is directly simulated, the internal mixing relative to the centroid is reproduced using a bivariate Gamma density function. The effect of turbulence on the chemical reaction (segregation), which in this case has not yet attained equilibrium, is directly evaluated through the covariance of the tracer concentration fields. The computed mean concentrations and the O3-NO concentration covariance are also compared with those obtained by the Alessandrini and Ferrero Lagrangian single particle model (Alessandrini and Ferrero, Physica A 388:1375-1387, 2009) that entails an ad hoc parametrization for the segregation coefficient. © 2012 Springer Science+Business Media Dordrecht. Source


de Roode S.R.,Technical University of Delft | Bosveld F.C.,Koninklijk Nederlands Meteorologisch Instituut | Kroon P.S.,Energy Research Center of the Netherlands
Boundary-Layer Meteorology | Year: 2010

Observations collected between 2000 and 2008 at the Cabauw meteorological measurement platform in the Netherlands were conditionally sampled to select nights with stably stratified atmospheric conditions, clear skies and weak horizontal wind speeds (<3 m s-1). For these conditions the eddy-correlation latent heat fluxes are found to be negligibly small, while the conditionally sampled surface energy balance exhibits a maximum residual. However, inspection of the specific humidities for these conditions reveals systematic drying trends that are a maximum at the lowest measurement level above the surface. These drying trends occur for any prevailing wind direction. Latent heat fluxes are calculated from the humidity budget equation and from a Penman-Monteith dewfall model, with the results suggesting that during clear, stable nights the observed latent heat fluxes as obtained from the eddy-correlation technique are erroneously small. © The Author(s) 2010. Source


Meehl G.A.,U.S. National Center for Atmospheric Research | Goddard L.,International Research Institute for Climate and Society | Boer G.,Canadian Center for Climate Modeling and Analysis | Burgman R.,Florida International University | And 25 more authors.
Bulletin of the American Meteorological Society | Year: 2014

The rapidly evolving field of decadal climate prediction, using initialized climate models to produce time-evolving predictions of regional climate, is producing new results for predictions, predictability, and prediction skill. © 2014 American Meteorological Society. Source


Stratmann G.,German Aerospace Center | Ziereis H.,German Aerospace Center | Stock P.,German Aerospace Center | Brenninkmeijer C.A.M.,Max Planck Institute for Chemistry | And 5 more authors.
Atmospheric Environment | Year: 2016

Nitrogen oxide (NO and NOy) measurements were performed onboard an in-service aircraft within the framework of CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container). A total of 330 flights were completed from May 2005 through April 2013 between Frankfurt/Germany and destination airports in Canada, the USA, Brazil, Venezuela, Chile, Argentina, Colombia, South Africa, China, South Korea, Japan, India, Thailand, and the Philippines. Different regions show differing NO and NOy mixing ratios. In the mid-latitudes, observed NOy and NO generally shows clear seasonal cycles in the upper troposphere with a maximum in summer and a minimum in winter. Mean NOy mixing ratios vary between 1.36 nmol/mol in summer and 0.27 nmol/mol in winter. Mean NO mixing ratios range between 0.05 nmol/mol and 0.22 nmol/mol. Regions south of 40°N show no consistent seasonal dependence. Based on CO observations, low, median and high CO air masses were defined. According to this classification, more data was obtained in high CO air masses in the regions south of 40°N compared to the midlatitudes. This indicates that boundary layer emissions are more important in these regions. In general, NOy mixing ratios are highest when measured in high CO air masses. This dataset is one of the most comprehensive NO and NOy dataset available today for the upper troposphere and is therefore highly suitable for the validation of atmosphere-chemistry-models. © 2016 Elsevier Ltd. Source

Discover hidden collaborations