Konigsee Implantate GmbH

Aschau am Inn, Germany

Konigsee Implantate GmbH

Aschau am Inn, Germany

Time filter

Source Type

Diefenbeck M.,Universitatsklinikum Jena | Muckley T.,Universitatsklinikum Jena | Schrader C.,Innovent Jena | Schmidt J.,Innovent Jena | And 5 more authors.
Biomaterials | Year: 2011

Many different technologies have been used to enhance osseointegration in orthopaedic and dental implant surgery. Hydroxyapatite coatings, pure or in combination with growth factors or bisphosphonates, showed improved osseointegration of titanium alloy implants. We choose a different approach to enhance osseointegration: plasma chemical oxidation was used to modify the surface of titanium alloy implants. This technique converts the nm-thin natural occurring titanium oxide layer on an implant to a 4 μm thick ceramic coating (TiOB surface). Bioactive TiOB surfaces have a macroporous structure and were loaded with calcium and phosphorus, while bioinert TiOB surfaces are smooth. A rat tibial model with bilateral placement of titanium alloy implants was employed to analyze the bone response to TiOB surfaces in vivo. 64 rats were randomly assigned to four groups of implants: (1) titanium alloy (control), (2) titanium alloy, type III anodization, (3) bioinert TiOB surface and (4) bioactive TiOB surface. Mechanical fixation, peri-implant-bone area and bone contact were evaluated by pull-out tests and histology at three and eight weeks. Shear strength and bone contact at eight weeks were significantly increased in the bioactive TiOB group compared to all other groups. The results of plasma chemical oxidation in a rat model showed that the bioactive TiOB surface has a positive effect on implant anchorage by enhancing the bone-implant contact in normal bone. © 2011 Elsevier Ltd.


Diefenbeck M.,University Hospital Jena | Schrader C.,Innovent Jena | Gras F.,University Hospital Jena | Muckley T.,University Hospital Jena | And 12 more authors.
Biomaterials | Year: 2016

Implant related infection is one of the most feared and devastating complication associated with the use of orthopaedic implant devices. Development of anti-infective surfaces is the main strategy to prevent implant contamination, biofilm formation and implant related osteomyelitis. A second concern in orthopaedics is insufficient osseointegration of uncemented implant devices. Recently, we reported on a macroporous titanium-oxide surface (bioactive TiOB) which increases osseointegration and implant fixation. To combine enhanced osseointegration and antibacterial function, the TiOB surfaces were, in addition, modified with a gentamicin coating. A rat osteomyelitis model with bilateral placement of titanium alloy implants was employed to analyse the prophylactic effect of gentamicin-sodiumdodecylsulfate (SDS) and gentamicin-tannic acid coatings in vivo. 20 rats were randomly assigned to four groups: (A) titanium alloy; PBS inoculum (negative control), (B) titanium alloy, Staphylococcus aureus inoculum (positive control), (C) bioactive TiOB with gentamicin-SDS and (D) bioactive TiOB plus gentamicin-tannic acid coating. Contamination of implants, bacterial load of bone powder and radiographic as well as histological signs of implant-related osteomyelitis were evaluated after four weeks. Gentamicin-SDS coating prevented implant contamination in 10 of 10 tibiae and gentamicin-tannic acid coating in 9 of 10 tibiae (infection prophylaxis rate 100% and 90% of cases, respectively). In Group (D) one implant showed colonisation of bacteria (swab of entry point and roll-out test positive for S. aureus). The interobserver reliability showed no difference in the histologic and radiographic osteomyelitis scores. In both gentamicin coated groups, a significant reduction of the histological osteomyelitis score (geometric mean values: C = 0.111 ± 0.023; D = 0.056 ± 0.006) compared to the positive control group (B: 0.244 ± 0.015; p < 0.05) was observed. The radiographic osteomyelitis scores confirmed these histological findings. © 2016 Elsevier Ltd


Zankovych S.,Friedrich - Schiller University of Jena | Diefenbeck M.,Universitatsklinikum Jena | Bossert J.,Friedrich - Schiller University of Jena | Muckley T.,Universitatsklinikum Jena | And 7 more authors.
Acta Biomaterialia | Year: 2013

Advances have been achieved in the design and biomechanical performance of orthopedic implants in the last decades. These include anatomically shaped and angle-stable implants for fracture fixation or improved biomaterials (e.g. ultra-high-molecular-weight polyethylene) in total joint arthroplasty. Future modifications need to address the biological function of implant surfaces. Functionalized surfaces can promote or reduce osseointegration, avoid implant-related infections or reduce osteoporotic bone loss. To this end, polyelectrolyte multilayer structures have been developed as functional coatings and intensively tested in vitro previously. Nevertheless, only a few studies address the effect of polyelectrolyte multilayer coatings of biomaterials in vivo. The aim of the present work is to evaluate the effect of polyelectrolyte coatings of titanium alloy implants on implant anchorage in an animal model. We test the hypotheses that (1) polyelectrolyte multilayers have an effect on osseointegration in vivo; (2) multilayers of chitosan/hyaluronic acid decrease osteoblast proliferation compared to native titanium alloy, and hence reduce osseointegration; (3) multilayers of chitosan/gelatine increase osteoblast proliferation compared to native titanium alloy, hence enhance osseointegration. Polyelectrolyte multilayers on titanium alloy implants were fabricated by a layer-by-layer self-assembly process. Titanium alloy (Ti) implants were alternately dipped into gelatine (Gel), hyaluronic acid (HA) and chitosan (Chi) solutions, thus assembling a Chi/Gel and a Chi/HA coating with a terminating layer of Gel or HA, respectively. A rat tibial model with bilateral placement of titanium alloy implants was employed to analyze the bones' response to polyelectrolyte surfaces in vivo. 48 rats were randomly assigned to three groups of implants: (1) native titanium alloy (control), (2) Chi/Gel and (3) Chi/HA coating. Mechanical fixation, peri-implant bone area and bone contact were evaluated by pull-out tests and histology at 3 and 8 weeks. Shear strength at 8 weeks was statistically significantly increased (p < 0.05) in both Chi/Gel and Chi/HA groups compared to the titanium alloy control. No statistically significant difference (p > 0.05) in bone contact or bone area was found between all groups. No decrease of osseointegration of Chi/HA-coated implants compared to non-coated implants was found. The results of polyelectrolyte coatings in a rat model showed that the Chi/Gel and Chi/HA coatings have a positive effect on mechanical implant anchorage in normal bone. © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.


Schrader C.,Innovent Jena | Schmidt J.,Innovent Jena | Diefenbeck M.,Universitatsklinikum Jena Erlanger | Muckley T.,Universitatsklinikum Jena Erlanger | And 5 more authors.
Advanced Engineering Materials | Year: 2012

The surface properties of titanium alloy implants for improved osseointegration in orthopaedic and dental surgery have been modified by many technologies. Hydroxyapatite coatings with a facultative integration of growth factors deposited by plasma spraying showed improved osseointegration. Our approach in order to enhance osseointegration was carried out by a surface modification method of titanium alloy implants called plasma chemical oxidation (PCO). PCO is an electrochemical procedure that converts the nm-thin natural occurring titanium-oxide layer on an implant to a 5 μm thick ceramic coating (TiOB-surface). Bioactive TiOB-surfaces have a porous microstructure and were loaded with calcium and phosphorous, while bioinert TiOB-surfaces with less calcium and phosphorous loadings are smooth. A rat tibial model with bilateral placement of titanium alloy implants was employed to analyze the bone response to TiOB-surfaces in vivo. 64 rats were randomly assigned to four groups of implants: (i) pure titanium alloy (control), ii) titanium alloy, type III anodization, (iii) bioinert TiOB-surface, and (iv) bioactive TiOB-surface. Mechanical fixation was evaluated by pull out tests at 3 and 8 weeks. The bioactive TiOB-surface showed significantly increased shear strength at 8 weeks compared to all other groups. Electrochemical conversion of titanium alloy implants enhances the ceramic characteristics of the interface between bulk material and bone. These coatings are also enriched with calcium and phosphorous due to temporary thermal arc discharges which also leave a porous microstructure behind. This TiOB interface is now approved to fulfil bioactive requirements in an animal model. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


PubMed | University Hospital Jena, Universitatsklinikum Jena, Innovent Jena, Post University and 2 more.
Type: | Journal: Biomaterials | Year: 2016

Implant related infection is one of the most feared and devastating complication associated with the use of orthopaedic implant devices. Development of anti-infective surfaces is the main strategy to prevent implant contamination, biofilm formation and implant related osteomyelitis. A second concern in orthopaedics is insufficient osseointegration of uncemented implant devices. Recently, we reported on a macroporous titanium-oxide surface (bioactive TiOB) which increases osseointegration and implant fixation. To combine enhanced osseointegration and antibacterial function, the TiOB surfaces were, in addition, modified with a gentamicin coating. A rat osteomyelitis model with bilateral placement of titanium alloy implants was employed to analyse the prophylactic effect of gentamicin-sodiumdodecylsulfate (SDS) and gentamicin-tannic acid coatings invivo. 20 rats were randomly assigned to four groups: (A) titanium alloy; PBS inoculum (negative control), (B) titanium alloy, Staphylococcus aureus inoculum (positive control), (C) bioactive TiOB with gentamicin-SDS and (D) bioactive TiOB plus gentamicin-tannic acid coating. Contamination of implants, bacterial load of bone powder and radiographic as well as histological signs of implant-related osteomyelitis were evaluated after four weeks. Gentamicin-SDS coating prevented implant contamination in 10 of 10 tibiae and gentamicin-tannic acid coating in 9 of 10 tibiae (infection prophylaxis rate 100% and 90% of cases, respectively). In Group (D) one implant showed colonisation of bacteria (swab of entry point and roll-out test positive for S.aureus). The interobserver reliability showed no difference in the histologic and radiographic osteomyelitis scores. In both gentamicin coated groups, a significant reduction of the histological osteomyelitis score (geometric mean values: C=0.1110.023; D=0.0560.006) compared to the positive control group (B: 0.2440.015; p<0.05) was observed. The radiographic osteomyelitis scores confirmed these histological findings.

Loading Konigsee Implantate GmbH collaborators
Loading Konigsee Implantate GmbH collaborators