Time filter

Source Type

Voh, France

Ulrich M.,CNRS Georesources lab | Ulrich M.,CNRS Institute of Earth Sciences | Ulrich M.,University of Strasbourg | Munoz M.,CNRS Institute of Earth Sciences | And 6 more authors.
Contributions to Mineralogy and Petrology

The weathering of mantle peridotite tectonically exposed to the atmosphere leads commonly to natural carbonation processes. Extensive cryptocrystalline magnesite veins and stock-work are widespread in the serpentinite sole of the New Caledonia ophiolite. Silica is systematically associated with magnesite. It is commonly admitted that Mg and Si are released during the laterization of overlying peridotites. Thus, the occurrence of these veins is generally attributed to a per descensum mechanism that involves the infiltration of meteoric waters enriched in dissolved atmospheric CO2. In this study, we investigate serpentinite carbonation processes, and related silicification, based on a detailed petrographic and crystal chemical study of serpentinites. The relationships between serpentine and alteration products are described using an original method for the analysis of micro-X-ray fluorescence images performed at the centimeter scale. Our investigations highlight a carbonation mechanism, together with precipitation of amorphous silica and sepiolite, based on a dissolution-precipitation process. In contrast with the per descensum Mg/Si-enrichment model that is mainly concentrated in rock fractures, dissolution-precipitation process is much more pervasive. Thus, although the texture of rocks remains relatively preserved, this process extends more widely into the rock and may represent a major part of total carbonation of the ophiolite. © 2014 Springer-Verlag Berlin Heidelberg. Source

Cathelineau M.,CNRS Georesources lab | Quesnel B.,CNRS Geosciences Laboratory of Rennes | Gautier P.,CNRS Geosciences Laboratory of Rennes | Boulvais P.,CNRS Geosciences Laboratory of Rennes | And 2 more authors.
Mineralium Deposita

In New Caledonian Ni deposits, the richest Ni silicate ores occur in fractures within the bedrock and saprolite, generally several tens of meters to hundred meters below the present-day surface. Fracture-related Ni silicate ore accounts for high Ni grades, at least a few weight percent above the average exploited grade (2.5 %). These Ni-rich veins are affected by active dissolution-precipitation processes at the level of the water table. Ni in solution is precipitated as silicates in thin layer cementing joints. This mineralization is characterized by chemical and mineralogical concentric zoning with an outer green rim around an inner white zone composed, from the edge to the centre of the block, (i) a highly oxidized and altered zone, (ii) a green pure Ni-rich pimelite zone, (iii) a zone (limited to a few centimetres) with a mixture of Ni-poor kerolite and Ni-rich pimelite and intermediate colours and (iv) a large white Mg-kerolite mineralization zone. This study proposes that the concentric zonation results from evapo-precipitation process related to alternate periods of hydration and drying, induced by water table movements. This extensive dispersion of Ni in concentrically zoned ores can partly explain the rather monotonous Ni grade of the bulk exploitation at the base of the regolith with values between 2 and 3 wt%. © 2015, Springer-Verlag Berlin Heidelberg. Source

Discover hidden collaborations