Kompetenzzentrum Wasser Berlin KWB

Berlin, Germany

Kompetenzzentrum Wasser Berlin KWB

Berlin, Germany
SEARCH FILTERS
Time filter
Source Type

Maeng S.K.,UNESCO-IHE Institute for Water Education | Maeng S.K.,Technical University of Delft | Maeng S.K.,Korea Institute of Science and Technology | Ameda E.,UNESCO-IHE Institute for Water Education | And 5 more authors.
Water Research | Year: 2010

Natural treatment systems such as bank filtration (BF) and artificial recharge (via an infiltration basin) are a robust barrier for many organic micropollutants (OMPs) and may represent a low-cost alternative compared to advanced drinking water treatment systems. This study analyzes a comprehensive database of OMPs at BF and artificial recharge (AR) sites located near Lake Tegel in Berlin (Germany). The focus of the study was on the derivation of correlations between the removal efficiencies of OMPs and key factors influencing the performance of BF and AR. At the BF site, shallow monitoring wells located close to the Lake Tegel source exhibited oxic conditions followed by prolonged anoxic conditions in deep monitoring wells and a production well. At the AR site, oxic conditions prevailed from the recharge pond along monitoring wells to the production well. Long residence times of up to 4.5 months at the BF site reduced the temperature variation during soil passage between summer and winter. The temperature variations were greater at the AR site as a consequence of shorter residence times. Deep monitoring wells and the production well located at the BF site were under the influence of ambient groundwater and old bank filtrate (up to several years of age). Thus, it is important to account for mixing with native groundwater and other sources (e.g., old bank filtrate) when estimating the performance of BF with respect to removal of OMPs. Principal component analysis (PCA) was used to investigate correlations between OMP removals and hydrogeochemical conditions with spatial and temporal parameters (e.g., well distance, residence time and depth) from both sites. Principal component-1 (PC1) embodied redox conditions (oxidation-reduction potential and dissolved oxygen), and principal component-2 (PC2) embodied degradation potential (e.g., total organic carbon and dissolved organic carbon) with the calcium carbonate dissolution potential (Ca2+ and HCO3 -) for the BF site. These two PCs explained a total variance of 55% at the BF site. At the AR site, PCA revealed redox conditions (PC1) and degradation potential with temperature (PC2) as principal components, which explained a total variance of 56%. © 2010 Elsevier Ltd.


Riechel M.,Kompetenzzentrum Wasser Berlin KWB | Matzinger A.,Kompetenzzentrum Wasser Berlin KWB | Sonnenberg H.,Kompetenzzentrum Wasser Berlin KWB | Caradot N.,Kompetenzzentrum Wasser Berlin KWB | And 3 more authors.
iEMSs 2012 - Managing Resources of a Limited Planet: Proceedings of the 6th Biennial Meeting of the International Environmental Modelling and Software Society | Year: 2012

In the city of Berlin combined sewer overflows (CSO) can lead to severe depressions in dissolved oxygen (DO) of receiving urban rivers and hence to acute stress for the local fish fauna. To quantify CSO impacts and optimize sewer management strategies, a model-based planning instrument has been developed. It couples the urban drainage model InfoWorks CS which simulates hydraulics and pollutant transport in the sewer with the river water quality model QSim which simulates hydraulics, mass transport and various biogeochemical processes in the receiving water body. To identify simulated CSO impacts, concentration-durationfrequency- thresholds for DO are applied to river model results via an impact assessment tool. Two kinds of impacts are distinguished: i) suboptimal conditions and ii) critical conditions for which acute fish kills are possible. In the case of Berlin, suboptimal conditions are observed on up to 92 days per year, predominantly during periods of low discharge and high temperatures whereas critical conditions only occur after CSO. For model calibration and validation, continuous measurements in both river and sewer are used. First simulations show good accordance between simulated and measured DO concentration in the river with Nash-Sutcliffe efficiencies between 0.70 and 0.79 for an eight-month time period at three different river monitoring points. However, to assure satisfactory model performance for adverse DO conditions in particular, impact assessment results for measured and simulated data are compared. Regarding suboptimal DO conditions simulated and measured data show good agreement. Nevertheless model representation for critical conditions is poor for some river sections and requires further improvement for CSO conditions. The results underline the importance of combining different validation approaches when dealing with complex systems.


Orlikowski D.,Kompetenzzentrum Wasser Berlin KWB | Bugey A.,Kompetenzzentrum Wasser Berlin KWB | Perillon C.,Kompetenzzentrum Wasser Berlin KWB | Julich S.,Justus Liebig University | And 3 more authors.
Water Science and Technology | Year: 2011

The present study aimed at developing a universal method for the localization of critical source areas (CSAs) of diffuse nitrate (NO 3 -) pollution in rural catchments with low data availability. Based on existing methods, land use, soil, slope, riparian buffer strips and distance to surface waters were identified as the most relevant indicator parameters for diffuse agricultural NO3 - pollution. The five parameters were averaged in a GIS-overlay to localize areas with low, medium and high risk of NO3 - pollution. A first application of the GIS approach to the Ic catchment in France, showed that identified CSAs were in good agreement with results from river monitoring and numerical modelling. Additionally, the GIS approach showed low sensitivity to single parameters, which makes it robust to varying data availability. As a result, the tested GIS-approach provides a promising, easy-to-use CSA identification concept, applicable for a wide range of rural catchments. © IWA Publishing 2011.


Matzinger A.,Kompetenzzentrum Wasser Berlin KWB | Muller B.,Eawag - Swiss Federal Institute of Aquatic Science and Technology | Muller B.,ETH Zurich | Niederhauser P.,Amt fur Abfall | And 2 more authors.
Limnology and Oceanography | Year: 2010

We quantified the areal hypolimnetic mineralization rate (AHM; total areal hypolimnetic oxygen depletion including the formation of reduced substances) in two formerly eutrophic lakes based on 20 yr of water-column data collected during oligotrophication. The upward diffusion of reduced substances originating from the decomposition of organic matter in the sediment was determined from pore-water profiles and related to the time of deposition. More than 80% of AHM was due to degradation of organic matter in the water column (including sediment surface) and diffusion of reduced substances from sediment layers younger than 10 yr. Sediments older than 10 yr, including the eutrophic past, accounted for ∼ 15% of AHM. This "old" contribution corresponds to a 20-43% fraction of the total sediment-based AHM. The contribution from old sediment layers to AHM is expected to be even lower in lakes with deeper hypolimnia (> 12 m). In summary, oxygen consumption in stratified hypolimnia is controlled mainly by the present lake productivity. As a result, technical lake management measures, such as oxygenation, artificial mixing, or sediment dredging, cannot efficiently decrease the flux of reduced substances from the sediment. © 2010, by the American Society of Limnology and Oceanography, Inc.


Krause Camilo B.,Umweltbundesamt FG Trinkwasserressourcen und Wasseraufbereitung | Matzinger A.,Kompetenzzentrum Wasser Berlin KWB | Litz N.,Umweltbundesamt FG Trinkwasserressourcen und Wasseraufbereitung | Tedesco L.P.,Wetlands Institute | Wessolek G.,TU Berlin
Ecological Engineering | Year: 2013

The present laboratory study tests the hypothesis that straw-bark mulch bioreactors are capable of concurrently retaining nitrate (NO3-) and the herbicides atrazine or bentazone at short hydraulic residence times (HRT). In a 1 year column experiment at HRT of ~4h three organic carbon sources, straw of common wheat (Triticum aestivum L.), bark mulch of pine tree (Pinus sp.) and a mixture of both materials, showed high reduction of continuously dosed NO3- (100mgL-1) with average denitrification rates of 23.4g-Nd-1m-3, 8.4g-Nd-1m-3 and 20.5g-Nd-1m-3, respectively. Under denitrifying conditions, fast and substantial retention of continuously dosed atrazine (20μgL-1) was observed with estimated dissipation times (DT50) between 0.12 and 0.49 days in the straw-bark mulch bioreactor. In parallel batch experiments, it could be confirmed that atrazine retention is based on adsorption to bark mulch and on degradation processes supplied by the organic materials as continual sources of carbon. In contrast, bentazone was not significantly reduced under the experimental conditions. While aging of materials was clearly observed in a reduction of denitrification by 60-70% during the experiment, systems still worked very well until the end of the experiment. The results indicate that the combined use of straw and bark mulch could increase the efficiency of mitigation systems, which are installed to improve the quality of drainage water before its release to surface waters. Further, the addition of these materials has the potential of parallel retention of NO3- and less mobile herbicides like atrazine, even during high flow events, as expected at the outlet of agricultural drainage systems. High removal is expected for mitigation system designed to remain saturated most of the time, whereas bioreactors that run periodically dry are not covered by this study. However, further experiments with the tested materials at technical or field scale under more realistic climate conditions need to be carried out. © 2013.


PubMed | Kompetenzzentrum Wasser Berlin KWB
Type: Journal Article | Journal: Water science and technology : a journal of the International Association on Water Pollution Research | Year: 2011

The present study aimed at developing a universal method for the localization of critical source areas (CSAs) of diffuse nitrate (NO3-) pollution in rural catchments with low data availability. Based on existing methods, land use, soil, slope, riparian buffer strips and distance to surface waters were identified as the most relevant indicator parameters for diffuse agricultural NO3- pollution. The five parameters were averaged in a GIS-overlay to localize areas with low, medium and high risk of NO3- pollution. A first application of the GIS approach to the Ic catchment in France, showed that identified CSAs were in good agreement with results from river monitoring and numerical modelling. Additionally, the GIS approach showed low sensitivity to single parameters, which makes it robust to varying data availability. As a result, the tested GIS-approach provides a promising, easy-to-use CSA identification concept, applicable for a wide range of rural catchments.

Loading Kompetenzzentrum Wasser Berlin KWB collaborators
Loading Kompetenzzentrum Wasser Berlin KWB collaborators