Komodo Survival Program

Denpasar, Indonesia

Komodo Survival Program

Denpasar, Indonesia
SEARCH FILTERS
Time filter
Source Type

Purwandana D.,Komodo Survival Program | Ariefiandy A.,Komodo Survival Program | Imansyah M.J.,Komodo Survival Program | Rudiharto H.,Komodo National Park | And 4 more authors.
Biological Conservation | Year: 2014

The Komodo dragon (Varanus komodoensis) is the world's largest lizard and endemic to five islands in Eastern Indonesia. The current management of this species is limited by a paucity of demographic information needed to determine key threats to population persistence. Here we conducted a large scale trapping study to estimate demographic parameters including population growth rates, survival and abundance for four Komodo dragon island populations in Komodo National Park. A combined capture mark recapture framework was used to estimate demographic parameters from 925 marked individuals monitored between 2003 and 2012. Island specific estimates of population growth, survival and abundance, were estimated using open population capture-recapture analyses. Large island populations are characterised by near or stable population growth (i.e. λ~. 1), whilst one small island population (Gili Motang) appeared to be in decline (λ= 0.68 ± 0.09). Population differences were evident in apparent survival, with estimates being higher for populations on the two large islands compared to the two small islands. We extrapolated island specific population abundance estimates (considerate of species habitat use) to produce a total population abundance estimate of 2448 (95% CI: 2067-2922) Komodo dragons in Komodo National Park. Our results suggest that park managers must consider island specific population dynamics for managing and recovering current populations. Moreover understanding what demographic, environmental or genetic processes act independently, or in combination, to cause variation in current population dynamics is the next key step necessary to better conserve this iconic species. © 2014 Elsevier Ltd.


Ariefiandy A.,Komodo Survival Program | Purwandana D.,Komodo Survival Program | Coulson G.,University of Melbourne | Forsyth D.M.,Arthur Rylah Institute for Environmental Research | Jessop T.S.,University of Melbourne
Wildlife Biology | Year: 2013

Monitoring the abundances of prey is important for informing the management of threatened and endangered predators. We evaluated the usefulness of faecal counts and distance sampling for monitoring the abundances of rusa deer Rusa timorensis, feral pig Sus scrofa and water buffalo Bubalus bubalis, the three key prey of the Komodo dragon Varanus komodoensis, at 11 sites on five islands in and around Komodo National Park, eastern Indonesia. We used species-specific global detection functions and cluster sizes (i.e. multiple covariates distance sampling) to estimate densities of rusa deer and feral pig, but there were too few observations to estimate densities of water buffalo. Rusa deer densities varied from from 2.5 to 165.5 deer/km2 with coefficients of variation (CVs) of 15-105%. Feral pig densities varied from 0.0 to 25.2 pigs/km 2 with CVs of 25-106%. There was a positive relationship between estimated faecal densities and estimated population densities for both rusa deer and feral pig: the form of the relationship was non-linear for rusa deer, but there was similar support for linear and non-linear relationships for feral pig. We found that faecal counts were more useful when ungulate densities were too low to estimate densities with distance sampling. Faecal count methods were also easier for field staff to conduct than distance sampling. Because spatial and temporal variation in ungulate density is likely to influence the population dynamics of the Komodo dragon, we recommend that annual monitoring of ungulates in and around Komodo National Park be undertaken using distance sampling and faecal counts. The relationships reported here will also be useful for managers establishing monitoring programmes for feral pig, rusa deer and water buffalo elsewhere in their native and exotic ranges. © Wildlife Biology, NKV.


Purwandana D.,Komodo Survival Program | Ariefiandy A.,Komodo Survival Program | Imansyah M.J.,Komodo Survival Program | Seno A.,Komodo National Park | And 3 more authors.
Die Naturwissenschaften | Year: 2016

Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons (Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ∼20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.


Ariefiandy A.,Komodo Survival Program | Purwandana D.,Komodo Survival Program | Seno A.,Komodo National Park | Chrismiawati M.,Balai Besar Konservasi Sumber Daya Alam | And 2 more authors.
Biodiversity and Conservation | Year: 2014

Finding practical ways to robustly estimate abundance or density trends in threatened species is a key facet for effective conservation management. Further identifying less expensive monitoring methods that provide adequate data for robust population density estimates can facilitate increased investment into other conservation initiatives needed for species recovery. Here we evaluated and compared inference-and cost-effectiveness criteria for three field monitoring-density estimation protocols to improve conservation activities for the threatened Komodo dragon (Varanus komodoensis). We undertook line-transect counts, cage trapping and camera monitoring surveys for Komodo dragons at 11 sites within protected areas in Eastern Indonesia to collect data to estimate density using distance sampling methods or the Royle-Nichols abundance induced heterogeneity model. Distance sampling estimates were considered poor due to large confidence intervals, a high coefficient of variation and that false absences were obtained in 45 % of sites where other monitoring methods detected lizards present. The Royle-Nichols model using presence/absence data obtained from cage trapping and camera monitoring produced highly correlated density estimates, obtained similar measures of precision and recorded no false absences in data collation. However because costs associated with camera monitoring were considerably less than cage trapping methods, albeit marginally more expensive than distance sampling, better inference from this method is advocated for ongoing population monitoring of Komodo dragons. Further the cost-savings achieved by adopting this field monitoring method could facilitate increased expenditure on alternative management strategies that could help address current declines in two Komodo dragon populations. © 2014 Springer Science+Business Media Dordrecht.


Harlow H.J.,University of Wyoming | Purwandana D.,Komodo Survival Program | Jessop T.S.,University of Melbourne | Phillips J.A.,Conservation and Research for Endangered Species
Journal of Thermal Biology | Year: 2010

Komodo dragons from hatchlings (≈0.1 kg) to adults (≤80 kg) express the full magnitude of varanid species size distributions. We found that all size groups of dragons regulated a similar preferred body temperature by exploiting a heterogeneous thermal environment within savanna, forest and mangrove habitats. All dragons studied, regardless of size, were able to regulate a daytime active body temperature within the range 34-35.6 °C for 5.1-5.6 h/day. The index of effectiveness of thermoregulation (a numerical rating of thermoregulatory activity) was not different among size groups of dragons. However, the index of closeness of thermoregulation, which rates the variability of body temperature, suggests a greater precision for regulating a preferred body temperature for medium compared to small and large dragons. Reference copper cylinders simulating small, medium and large Komodo dragons heated and cooled at the same rate, whereas actual dragons of all size groups heated faster than they cooled. Larger dragons heated and cooled more slowly than smaller ones. The mean operative environmental temperatures of copper cylinders representing medium sized dragons were 42.5, 32.0 and 29.4° C for savannah, forest and mangrove habitats, respectively. The index for average thermal quality of a habitat as measured by the absolute difference between operative environmental temperature and the dragon's thermal range suggests the forest habitat offers the highest thermal quality to dragons and the savannah the lowest. The percent of total daytime that the operative environmental temperature was within the central 50% of the body temperatures selected by dragons in a thermal gradient (Phillips, 1984) was 45%, 15%, and 9% for forest, mangrove and savannah, respectively. Forest habitat offers the most suitable thermal environment and provides the greatest number of hours with conditions falling within the dragon's thermal activity zone. © 2010 Elsevier Ltd.

Loading Komodo Survival Program collaborators
Loading Komodo Survival Program collaborators