Kochi, Japan

Kochi University of Technology is a prefectural university in Tosa Yamada, Kami, Kōchi, Japan.After its founding in 1997, Professor Yasuharu Suematsu was its first president.Kochi University of Technology serves 2056 undergraduate students, 224 Master students and 74 Doctoral students . Wikipedia.


Time filter

Source Type

News Article | April 21, 2017
Site: www.theenergycollective.com

Many highly populated coastal regions around the globe suffer from severe drought conditions. In an effort to deliver fresh water to these regions, while also considering how to produce the water efficiently using clean-energy resources, a team of researchers from MIT and the University of Hawaii has created a detailed analysis of a symbiotic system.It combines a pumped hydropower energy storage system and reverse osmosis desalination plant that can meet both of these needs in one large-scale engineering project. The researchers, who have shared their findings in a paper published in Sustainable Energy Technologies and Assessments, say this kind of combined system could ultimately lead to cost savings, revenues, and job opportunities. The basic idea to use a hydropower system to also support a reverse osmosis desalination plant was first proposed two decades ago by Professor Masahiro Murakami of Kochi University of Technology, but was never developed in detail. “Back then, renewables were too expensive and oil was too cheap,” says the paper’s co-author Alexander Slocum, the Pappalardo Professor of Mechanical Engineering at MIT. “There was not the extreme need and sense of urgency that there is now with climate change, increasing populations and waves of refugees fleeing drought and war-torn regions.” Recognizing the potential of the concept now, Slocum and his co-authors — Maha Haji, Sasan Ghaemsaidi, and Marco Ferrara of MIT; and A Zachary Trimble of the University of Hawaii — developed a detailed engineering, geographic, and economic model to explore the size and costs of the system and enable further analysis to evaluate its feasibility at any given site around the world. Typically, energy and water systems are considered separately, but combining the two has the potential to increase efficiency and reduce capital costs. Termed an “integrated pumped hydro reverse osmosis (IPHRO) system,” this approach uses a lined reservoir placed in high mountains near a coastal region to store sea water, which is pumped up using excess power from renewable energy sources or nuclear power stations. When energy is needed by the electric grid, water flows downhill to generate hydroelectric power. With a reservoir elevation greater than 500 meters, the pressure is great enough to also supply a reverse osmosis plant, eliminating the need for separate pumps. An additional benefit is that the amount of water typically used to generate power is about 20 times the amount needed for creating fresh water. That means the brine outflow from the reverse osmosis plant can be greatly diluted by the water flowing through the hydroelectric turbines before it discharges back into the ocean, which reduces reverse osmosis outflow system costs. As part of their research, Slocum’s team developed an algorithm that calculates a location’s distance from the ocean and mountain height to explore areas around the world where IPHRO systems could be installed. Additionally, the team has identified possible IPHRO system locations with potential for providing power and water — based on the U.S. average of generating 50 kilowatt-hours of energy and 500 liters of fresh water per day — to serve 1 million people. In this scenario, a reservoir at 500 meters high would only need to be one square kilometer in size and 30 meters deep. The team’s analysis determined that in Southern California, all power and water needs can actually be met for 28 million people. An IPHRO system could be located in the mountains along the California coast or in Tijuana, Mexico, and would additionally provide long-term construction and renewable energy jobs for tens of thousands of people. Findings show that to build this system, the cost would be between $5,000 and $10,000 per person served. This would cover the cost of all elements of the system — including the renewable energy sources, the hydropower system, and the reverse osmosis system — to provide each person with all necessary renewable electric power and fresh water. Working with colleagues in Israel and Jordan under the auspices of the MIT International Science and Technology Initiatives (MISTI) program, the team has studied possible sites in the Middle East in detail, as abundant fresh water and continuous renewable energy could help bring stability to the region. An IPHRO system could potentially form the foundation for stable economic growth, providing local jobs and trade opportunities and, as hypothesized in Slocum’s article, IPHRO systems could possibly help mitigate migration issues as a direct result of these opportunities. “Considering the cost per refugee in Europe is about 25,000 euros per year and it takes several years for a refugee to be assimilated, an IPHRO system that is built in the Middle East to anchor a new community and trading partner for the European Union might be a very good option for the world to consider,” Slocum says. “If we create a sustainable system that provides clean power, water, and jobs for people, then people will create new opportunities for themselves where they actually want to live, and the world can become a much nicer place.” This work is available as an open access article on ScienceDirect, thanks to a grant by the S.D. Bechtel Jr. Foundation through the MIT Energy Initiative, which also supported the class from which this material originated. The class has also been partially supported by MISTI and the cooperative agreement between the Masdar Institute of Science and Technology and MIT.


News Article | April 18, 2017
Site: news.mit.edu

Many highly populated coastal regions around the globe suffer from severe drought conditions. In an effort to deliver fresh water to these regions, while also considering how to produce the water efficiently using clean-energy resources, a team of researchers from MIT and the University of Hawaii has created a detailed analysis of a symbiotic system that combines a pumped hydropower energy storage system and reverse osmosis desalination plant that can meet both of these needs in one large-scale engineering project. The researchers, who have shared their findings in a paper published in Sustainable Energy Technologies and Assessments, say this kind of combined system could ultimately lead to cost savings, revenues, and job opportunities. The basic idea to use a hydropower system to also support a reverse osmosis desalination plant was first proposed two decades ago by Professor Masahiro Murakami of Kochi University of Technology, but was never developed in detail. "Back then, renewables were too expensive and oil was too cheap," says the paper’s co-author Alexander Slocum, the Pappalardo Professor of Mechanical Engineering at MIT. "There was not the extreme need and sense of urgency that there is now with climate change, increasing populations and waves of refugees fleeing drought and war-torn regions." Recognizing the potential of the concept now, Slocum and his co-authors — Maha Haji, Sasan Ghaemsaidi, and Marco Ferrara of MIT; and A Zachary Trimble of the University of Hawaii — developed a detailed engineering, geographic, and economic model to explore the size and costs of the system and enable further analysis to evaluate its feasibility at any given site around the world. Typically, energy and water systems are considered separately, but combining the two has the potential to increase efficiency and reduce capital costs. Termed an "integrated pumped hydro reverse osmosis (IPHRO) system," this approach uses a lined reservoir placed in high mountains near a coastal region to store sea water, which is pumped up using excess power from renewable energy sources or nuclear power stations. When energy is needed by the electric grid, water flows downhill to generate hydroelectric power. With a reservoir elevation greater than 500 meters, the pressure is great enough to also supply a reverse osmosis plant, eliminating the need for separate pumps. An additional benefit is that the amount of water typically used to generate power is about 20 times the amount needed for creating fresh water. That means the brine outflow from the reverse osmosis plant can be greatly diluted by the water flowing through the hydroelectric turbines before it discharges back into the ocean, which reduces reverse osmosis outflow system costs. As part of their research, Slocum’s team developed an algorithm that calculates a location's distance from the ocean and mountain height to explore areas around the world where IPHRO systems could be installed. Additionally, the team has identified possible IPHRO system locations with potential for providing power and water — based on the U.S. average of generating 50 kilowatt-hours of energy and 500 liters of fresh water per day — to serve 1 million people. In this scenario, a reservoir at 500 meters high would only need to be one square kilometer in size and 30 meters deep. The team's analysis determined that in Southern California, all power and water needs can actually be met for 28 million people. An IPHRO system could be located in the mountains along the California coast or in Tijuana, Mexico, and would additionally provide long-term construction and renewable energy jobs for tens of thousands of people. Findings show that to build this system, the cost would be between $5,000 and $10,000 per person served. This would cover the cost of all elements of the system — including the renewable energy sources, the hydropower system, and the reverse osmosis system — to provide each person with all necessary renewable electric power and fresh water. Working with colleagues in Israel and Jordan under the auspices of the MIT International Science and Technology Initiatives (MISTI) program, the team has studied possible sites in the Middle East in detail, as abundant fresh water and continuous renewable energy could help bring stability to the region. An IPHRO system could potentially form the foundation for stable economic growth, providing local jobs and trade opportunities and, as hypothesized in Slocum’s article, IPHRO systems could possibly help mitigate migration issues as a direct result of these opportunities. "Considering the cost per refugee in Europe is about 25,000 euros per year and it takes several years for a refugee to be assimilated, an IPHRO system that is built in the Middle East to anchor a new community and trading partner for the European Union might be a very good option for the world to consider," Slocum says. "If we create a sustainable system that provides clean power, water, and jobs for people, then people will create new opportunities for themselves where they actually want to live, and the world can become a much nicer place." This work is available as an open access article on ScienceDirect, thanks to a grant by the S.D. Bechtel Jr. Foundation through the MIT Energy Initiative, which also supported the class from which this material originated. The class has also been partially supported by MISTI and the cooperative agreement between the Masdar Institute of Science and Technology and MIT.


Patent
LINTEC Corporation and Kochi University of Technology | Date: 2013-03-20

A zinc-oxide-based conductive stacked structure 1 includes a substrate 11 and, formed on at least one surface of the substrate, an undercoat layer 12 and a transparent conductive film 13. The transparent conductive film is formed of a plurality of transparent conductive layers formed from a zinc-oxide-based conductive material and has a carrier density of 2.0 10^(20) to 9.8 10^(20) cm^(-3). The zinc-oxide-based conductive stacked structure exhibits a change ratio in sheet resistivity of 50 or less, after bending of the stacked structure around a round bar having a diameter of 15 mm, with the transparent conductive film facing inward.


Patent
Sharp Kabushiki Kaisha and Kochi University of Technology | Date: 2014-07-16

A stereo-image processing apparatus capable of adaptively converting, regarding stereo vision, a parallax distribution of a stereo image in accordance with human visual performance is provided. The stereo-image processing apparatus includes a continuity detection unit (31) that detects a parallax continuous region on the basis of the discontinuity of parallax values in a stereo image and a conversion processing unit (32) that performs processing for enhancing the parallax gradient of the parallax continuous region.


Patent
Sharp Kabushiki Kaisha and Kochi University of Technology | Date: 2013-10-11

The present invention makes it possible to adaptively convert distribution of disparities or depths of a stereoscopic image according to a visual property of a human related to stereopsis. A stereoscopic image processing apparatus according to the present invention is a stereoscopic image processing apparatus which receives an input stereoscopic image, and converts distribution of disparities or depths of the input stereoscopic image, the apparatus includes a planar region extracting unit (31) which extracts a planar region in the stereoscopic image; a non-planar region conversion processing unit (exemplified using non-planar region disparity conversion processing unit (32)) which performs a first conversion process in which the disparity or the depth is converted with respect to a non-planar region which is a region other than the planar region; and a planar region conversion processing unit (exemplified using planar region disparity conversion processing unit (33)) which performs a second conversion process in which the disparity or the depth is converted using a conversion property which is different from that in the first conversion process with respect to the planar region. Here, the first conversion process is a process in which a conversion based on a non-linear conversion property is performed related to the disparity or the depth with respect to the non-planar region.


Patent
Sumitomo Bakelite and Kochi University of Technology | Date: 2015-01-28

A base material-carried catalyst including a base material, a cured body of a thermosetting resin formed on the surface of the base material, fine particles having catalytic activity carried on the surface of the cured body, in which the thermosetting resin has a phenolic hydroxyl group.


Patent
Nippon Pillar Packing Co. and Kochi University of Technology | Date: 2016-03-17

A titanium-oxide catalyst containing catalytic metal shows catalysis under high temperature conditions. A titanium-oxide catalyst contains a titanium-oxide nanoparticle assembly and ruthenium particles. The titanium-oxide nanoparticle assembly is an assembly of titanium-oxide nanoparticles, which are nanoparticles of titanium oxide. The ruthenium particles have a smaller particle diameter than the titanium-oxide nanoparticle assembly and the titanium-oxide nanoparticles. The ruthenium particles are dispersed and supported on a surface of the titanium-oxide nanoparticle assembly.


Patent
Sumitomo Bakelite and Kochi University of Technology | Date: 2014-07-16

Provided is a resin-supported catalyst including a cured body of a thermosetting resin and fine particles having catalytic activity supported onto the surface of the cured body, in which the thermosetting resin has a phenolic hydroxyl group.


Patent
University of Tsukuba, Kochi University of Technology and Tokai University | Date: 2014-06-04

The present invention is provided with: a data-driven processor (21) comprising at least a firing control (32) which determines whether or not firing conditions have been met by determining whether or not all packets necessary for instruction execution have been received when a packet that convey a part of partitioned data to be processed has been input, and a data processing unit (37) for performing processing corresponding to the packets transmitted from the firing control (32) if the firing conditions have been met; a power supply circuit (57) for supplying power to the data-driven processor (21); and overload avoidance means (23) for refusing input of the packets to the data-driven processor (21), if a determination has been made that a data processing load in the data-driven processor (21) may reach an overloaded state in which the data processing may stall, on the basis of current consumption (Iss) in the data-driven processor (21). Accordingly, power consumption in a networking system (S) is reduced.


In a stereoscopic image processing device, disparity distribution of a stereoscopic image can be adaptively transformed in accordance with visual characteristics of a person relating to stereoscopic vision. The stereoscopic image processing device includes a disparity distribution transformation section (30) that transforms disparity distribution of a stereoscopic image input by an input section (10). The disparity distribution transformation section (30) reduces a difference in disparity between adjacent pixels in an area of the stereoscopic image, in which the difference in disparity between the adjacent pixels is large.

Loading Kochi University of Technology collaborators
Loading Kochi University of Technology collaborators