Time filter

Source Type

Kobe, Japan

Kobe Pharmaceutical University is a private university in Higashinada, Kobe, Hyōgo, Japan. The predecessor of the school was founded in 1930, and it was chartered as a women's college in 1949. In 1994 the school became coeducational, adopting the present name. Wikipedia.

Ueda M.,Kobe Pharmaceutical University
Chemical and Pharmaceutical Bulletin | Year: 2014

The application of conjugated oxime ethers to the synthesis of complex chemical scaffolds using domino radical reactions has been described in detail. The triethylborane-mediated hydroxysulfenylation reaction allows for the regioselective construction of a carbon-sulfur bond and a carbon-oxygen bond in a single operation for the formation of β-hydroxy sulfides. This reaction proceeds via a radical pathway involving regioselective thiyl addition and the subsequent trapping of the resulting α-imino radical with O2, where the imino group enhances the stability of the intermediate radical. Hydroxyalkylation reactions that occur via a carbon radical addition reaction followed by the hydroxylation of the resulting N-borylenamine with O2have also been developed. We investigated sequential radical addition aldol-type reactions in detail to explore the novel domino reactions that occur via the generation of N-borylenamine. The radical reaction of a conjugated oxime ether with triethylborane in the presence of an aldehyde affords γ-butyrolactone via sequential processes including ethyl radical addition, the generation of N-borylenamine, an aldol-type reaction with an aldehyde, and a lactonization reaction. A novel domino reaction has also been developed involving the [3,3]-sigmatropic rearrangement of N-boryl-N-phenoxyenamine. The triethylborane-mediated domino reactions of O-phenyl-conjugated oxime ethers afforded the corresponding benzofuro[2,3-b]pyrrol-2-ones via a radical addition/[3,3]-sigmatropic rearrangement/cyclization/lactamization cascade. © 2014 The Pharmaceutical Society of Japan.

Shitan N.,Kobe Pharmaceutical University | Yazaki K.,Kyoto University
International Review of Cell and Molecular Biology | Year: 2013

The vacuole is the largest compartment in plant cells, often occupying more than 80% of the total cell volume. This organelle accumulates a large variety of endogenous ions, metabolites, and xenobiotics. The compartmentation of divergent substances is relevant for a wide range of biological processes, such as the regulation of stomata movement, defense mechanisms against herbivores, flower coloration, etc. Progress in molecular and cellular biology has revealed that a large number of transporters and channels exist at the tonoplast. In recent years, various biochemical and physiological functions of these proteins have been characterized in detail. Some are involved in maintaining the homeostasis of ions and metabolites, whereas others are related to defense mechanisms against biotic and abiotic stresses. In this review, we provide an updated inventory of vacuolar transport mechanisms and a comprehensive summary of their physiological functions. © 2013 Elsevier Inc.

Kitagawa H.,Kobe Pharmaceutical University
Biological and Pharmaceutical Bulletin | Year: 2014

Chondroitin sulfate (CS) chains constitute a class of glycosaminoglycans (GAGs). CS chains are distributed on the surfaces of virtually all cells and throughout most extracellular matrices; they are covalently attached to serine residues of core proteoglycan proteins. CS proteoglycans have been implicated as regulators of a variety of biological events, including cell-cell and cell-matrix adhesion, cell proliferation, morphogenesis, and neurite outgrowth. The functional diversity of CS proteoglycans is mainly attributed to the structural variability of the GAG chains, specifically the CS chains. Despite their relatively simple polysaccharide backbones, CS chains acquire remarkable structural variability via several types of enzymatic modifications, including sulfation. Moreover, the sulfation status of CS chains, chain length, number of CS chains per core protein, or combinations thereof can be finely tuned via CS biosynthetic machinery to specify the structure and function of CS proteoglycans. The term "sugar remodeling" refers to the experimental or therapeutic structural alteration of CS chains via perturbation of specific CS biosynthetic enzymes in cells or living organisms; sugar remodeling is a promising approach to the study of CS chain function. This review focuses on our recent findings regarding CS function which have resulted from studies involving sugar remodeling. © 2014 The Pharmaceutical Society of Japan.

Yamaki K.,Kobe Pharmaceutical University | Yoshino S.,Kobe Pharmaceutical University
Allergy: European Journal of Allergy and Clinical Immunology | Year: 2012

Background: Systemic and oral antigen-induced anaphylaxes are mediated by immunoglobulin (Ig) E and mast cells, but there is no satisfactory treatment for the life-threatening allergic reaction. We investigated the potential of the multitargeted receptor tyrosine kinase inhibitor sunitinib to relieve anaphylactic reactions in food allergy and systemic anaphylaxis. Methods: Efficacy of oral sunitinib on oral and parenteral antigen-induced anaphylaxes in Balb/c mice was evaluated. IgE-dependent degranulation and growth of rat basophilic leukemia RBL2H3 and bone marrow-derived mast cells (BMMCs) in response to sunitinib were investigated. Results: Daily administration of sunitinib throughout antigen challenges prevented oral antigen-induced anaphylaxis including diarrhea, anaphylactic symptoms, and hypothermia. The mouse mast cell protease (MMCP)-1 concentration in serum and mast cell number in intestinal tissue after challenge were also decreased by the treatment. Spleen cells from sunitinib-treated mice contained smaller numbers of antigen-specific IgG-producing cells and secreted lower amounts of both Th1 and Th2 cytokines than those of the control mice, whereas the levels of antigen-specific antibodies in serum were not decreased. The reactions and MMCP-1 release in oral antigen-induced anaphylaxis and passive systemic anaphylaxis were attenuated even by a single predose of sunitinib. Degranulation and growth of RBL2H3 cells and BMMCs were greatly reduced by sunitinib. Conclusion: These results suggested that sunitinib relieves systemic and oral antigen-induced anaphylaxes by the prevention of mast cell activation and hyperplasia in intestinal tissue directly and indirectly through an immunosuppressive effect. Sunitinib and its related kinase inhibitors might be potential drugs for the treatment of food allergy and systemic anaphylaxis. © 2011 John Wiley & Sons A/S.

Kobayashi N.,Kobe Pharmaceutical University | Oyama H.,Kobe Pharmaceutical University
Analyst | Year: 2011

Clinical and environmental analyses often require immunochemical detection and quantification of small molecules (haptens) that are available as biomarkers. However, the affinity ceilings of conventional anti-hapten antibodies, which are produced by immunizing animals, prevent subfemtomole-range determinations with competitive immunoassay formats. "Sandwich-type" noncompetitive (immunometric) assays allow for sensitive determinations of macromolecules (subattomole-range) and the direct relationship between analyte amount and signal intensity provides higher accessibility to modern high-throughput sensing systems. Unfortunately, sandwich-type assays require that analytes have at least two epitopes, and thus are not applicable to haptens. Antibody engineering, i.e., genetic manipulation of antibody molecules, could provide artificially improved reagents that enable us to overcome these limitations. In this review, we summarize recent successful developments and applications of engineered antibodies for sensitive and high-throughput hapten sensing. © The Royal Society of Chemistry 2011.

Discover hidden collaborations