Time filter

Source Type

Patent
Bendix Spicer Foundation Brake LLC and Knorr Bremse Systeme fur Schienenfahrzeuge GmbH | Date: 2016-03-03

A disc brake for a vehicle, in particular for a commercial vehicle, includes a brake carrier which receives at least two brake pads in respective clamping side and rear side pad slots, with the at least one brake pad on the clamping side being held in its pad slot in a form-fitting manner. The at least one brake pad on the clamping side is provided with at least one pad retaining spring which is supported at least on a brake carrier horn of the pad slot of the brake carrier. The at least one clamping spring exerts a tensile force acting radially outward on the brake pad. A brake pad set for the disc brake is also provided.


A method for controlling a pneumatic or electro-pneumatic service brake device of a vehicle is provided. In the method a driver brake request occurs by actuating a service brake actuating element of a service brake valve device of the braking device. In response to actuating the service brake actuating element, at least one control piston of the service brake valve device is loaded with a first actuating force in order to generate a pneumatic brake pressure or brake control pressure in at least one pneumatic service brake circuit of the service brake device. The control piston directly or indirectly controls at least one double-seat valve of the service brake valve device. The at least one double-seat valve includes an inlet seat and an outlet seat. The at least one control piston of the service brake valve device in addition is loaded by a second actuation force additionally or instead of the first actuation force. The second actuation force, which is generated independently of a driver braking request, is applied to the at least one control piston in parallel to the first actuation force, either in the same direction or in the counter direction.


Patent
Knorr Bremse Systeme fur Schienenfahrzeuge GmbH | Date: 2017-02-17

A disc brake, preferably a compressed air-actuated disc brake, in particular for a motor vehicle, has a brake application mechanism with a brake rotary lever, at least one spindle unit having a threaded rod screwed into a bridge, and a brake caliper. The caliper frames an edge region of a brake disc. The brake caliper has a brake application portion and a caliper back which are connected together via tie bars. The brake application mechanism with the brake rotary lever is received in the brake application portion of the brake caliper from an application face side of the brake disc. The brake application portion of the brake caliper has a first region, in which the application mechanism and a force transmission portion of the brake rotary lever are arranged, a second region, which is formed as a lever housing, and a lever portion for the brake rotary lever. A support wall with a bearing portion, which forms a pivot bearing with a brake rotary lever axis that runs parallel to the brake disc, for the brake rotary lever is arranged between the first region and the second region.


Patent
Knorr Bremse Systeme fur Schienenfahrzeuge GmbH | Date: 2017-02-17

An adjusting device for a disc brake, in particular for utility vehicles, is provided. The adjusting device includes a freewheel having an inner ring and an outer ring. The inner ring and outer ring together with multiple rolling bearing balls form an axial ball bearing. The inner ring is rotatably supported relative to the outer ring by the rolling bearing balls. The freewheel further has a cage in which multiple clamping rollers are biased with compression springs and compression pieces, the cage being arranged between the inner ring and the outer ring in a radial direction relative to a through-bore passing through the inner and outer rings. The compression springs may be pretensioned by rotating the cage relative to the inner ring and then fixing the cage to on the inner ring with a locking device.


A seal ring is provided for axially sealing two parts arranged so as to be able to move axially with respect to one another. The seal ring has two sealing lips which are arranged circumferentially on an axial first end side of the seal ring. In this context, the sealing lips are designed such that they can be spread apart from one another by a first fluid pressure of a first fluid volume to bear in a sealing manner against mutually opposing sealing faces of a first of the parts. The seal ring also has a sealing projection which is arranged circumferentially on a second end side of the seal ring, oriented axially away from the first end side. In that context, the sealing projection is designed in order, when in a state bearing against a sealing surface of a second of the parts, to seal the first fluid volume in a region arranged radially inward with respect to the sealing projection against a second fluid volume at a second fluid pressure in a region arranged radially outward with respect to the sealing projection.


Patent
Knorr Bremse Systeme fur Schienenfahrzeuge GmbH | Date: 2017-03-09

A pressure regulating device is provided for at least one tire of a commercial vehicle, having a relay valve which performs compressed air loading of a working line which leads to the tire starting from a pressure source in accordance with a pneumatic pilot controller which has an electropneumatic converter for converting an electric actuating signal into a corresponding pneumatic pilot control signal for the relay valve. The converter has an electropneumatic aeration valve and an electropneumatic ventilating valve for pneumatic signal specifying for increasing or reducing the tire pressure. The pneumatic signal specifying takes place according to special regulations.


Grant
Agency: European Commission | Branch: H2020 | Program: Shift2Rail-RIA | Phase: S2R-CFM-IP5-01-2015 | Award Amount: 3.48M | Year: 2016

The FR8RAIL project proposal is submitted as part of the Shift2Rail Research and Innovation Action. Within the FR8RAIL project proposal there are eighteen European partners. The main aim of the FR8RAIL project proposal is the development of functional requirements for a sustainable and attractive European rail freight. These objectives of FR8RAIL are: A 10 % reduction in the cost of freight transport measured by tonnes per Km. A 20 % reduction in the time variations during dwelling and increase attractiveness of logistic chains by making available 100 % of the rail freight transport information to logistic chain information systems. The objectives of the FR8RAIL project will be achieved by developing a number of vital areas within freight rail. There are six main areas of work that form the backbone of this proposals approach in achieving the development of functional requirements for a sustainable and attractive European rail freight. The work areas are 1) Business Analytics, KPIs, Top Level Requirements, 2) Condition Based and Predictive Maintenance, 3) Telematics & Electrification, 4) Running Gear, Core and Extended Market Wagon, 5) Automatic Coupling, 6) High level System Architecture and Integration. The outcome of FR8RAIL and its deliverables are expected to positively contribute to and support the Shift2Rail goals set out in the Strategic Masterplan and the Multi Annual Action Plan viz. to strengthen the role of rail in the transport system, and in particular freight rail transport.


Grant
Agency: European Commission | Branch: H2020 | Program: Shift2Rail-RIA | Phase: S2R-CFM-IP1-01-2016 | Award Amount: 12.98M | Year: 2016

The PINTA Project (IP1 Traction TD1 and Brakes TD5 Phase 1) will address the two key topics highlighted in the first Shift2Rail Call topic S2R-CFM-IP1-01-2016 Development of concepts towards the next generation of traction systems and management of wheel/rail adhesion, namely Traction and Adhesion Management. Traction subproject will focus on the improvement of seven technical and economical performances of the Traction system that have been agreed and defined in Roll2Rail. These performances have to be improved on five different train applications having different constraints, needs and specificities, from tramway to HST, including metro, sub-urban, regional trains. In particular, Traction sub-project will address the following: 1) Line capacity increase through weight, volume and noise savings of Traction equipment. 2) Operational reliability increase via higher reliability/availability. 3) Railway system LCC reduction As far as Adhesion management is concerned, the work will lead to the achievement of a number of important objectives linked to Brakes, such as Improvement of braking degradation limit in poor adhesion condition Management of all adhesion conditions in a way that brake distances are optimized Improvement of the overall train safety, which relies substantially on the management of the wheel/rail contact Reduction of wheel Life-Cycle-Costs (LCCs) through optimized wheel/rail contact in braking The activities should contribute in formulating new performance specifications for Adhesion Recovery Systems. Moreover, improved requirements for Wheel Slide Protection test procedures should be developed, followed by new specifications for Automatic Test benches.


Grant
Agency: European Commission | Branch: H2020 | Program: Shift2Rail-RIA | Phase: S2R-CFM-IP1-02-2016 | Award Amount: 5.91M | Year: 2016

CONNECTA aims at contributing to the S2Rs next generation of TCMS architectures and components with wireless capabilities as well as to the next generation of electronic braking systems. CONNECTA will conduct research into new technological concepts, standard specifications and architectures for train control and monitoring, with specific applications in train-to-ground communications and high safety electronic control of brakes. The specific actions to be undertaken within the scope of CONNECTA contributing to the S2R Multi-Annual Action Plan on TD1.2 and TD1.5 are: To develop the general specifications of next generation TCMS and to generate the corresponding high level system architecture; To incorporate wireless technologies to train communication network solutions; To provide a train-wide communication network for full TCMS support including the replacement of train lines, connecting safety functions up to SIL4 and support of fail-safe and fail-tolerant principles, to provide an optimal train network for TCMS & OMTS (Onboard Multimedia and Telematic Services) as well as communication mean for non-TCMS functions; To standardise functional interfaces of functions and sub systems as well as to define a generic functional architecture for the next TCMS generation; To facilitate the coupling of two or more consists supplied by different manufacturers and which could have different train functions; To develop a simulation framework in which all subsystems of the train can be simulated, allowing remote and distributed testing including hardware in-the-loop through heterogeneous communication networks; To achieve a performance improvement in safety relevant braking functions resulting in optimisation of the braking distances in safety braking; To optimise onboard systems by reducing the number of sophisticated pneumatic components and improving the overall LCC; To validate non-railway EN standards for use in safety-related railway applications.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: MG-2.3-2014 | Award Amount: 16.00M | Year: 2015

The ROLL2RAIL project aims to develop key technologies and to remove already identified blocking points for radical innovation in the field of railway vehicles, as part of a longer term strategy to revolutionise the rolling stock for the future. The high level objectives of the work are to pave the way to: Increase the capacity of the railway system and bring flexibility to adapt capacity to demand Increase availability, operational reliability and therefore punctuality of the vehicles Reduce the life cycle costs of the vehicle and the track Increase the energy efficiency of the system Improve passenger comfort and the attractiveness of rail transport Specific developments are proposed the scope of ROLL2RAIL: Basis of a radically new traction technology based on emerging electronic components leading towards more energy-efficient traction, which is lighter and more reliable while reducing the noise emitted New wireless technology applied to train control functionalities will allow more flexible coupling to increase line capacity Carbody solutions based on lightweight composite materials to reduce weight A way of quantifying the life-cycle cost impact of new technological solutions for running gear; Knowledge database of the variety of requirements in Europe for the braking systems to bring down barriers to step-change innovation in this area Standardised methodologies for assessing attractiveness and comfort from the passengers point of view Methodology for noise source separation techniques allowing implementation of novel and more efficient noise mitigation measures It is also the objective of ROLL2RAIL to serve as a preparation for a fast and smooth start up of the large scale initiative SHIFT2RAIL. All ROLL2RAIL results will ultimately lead to demonstration in real vehicles or relevant environments in SHIFT2RAIL.

Loading Knorr Bremse Systeme fur Schienenfahrzeuge GmbH collaborators
Loading Knorr Bremse Systeme fur Schienenfahrzeuge GmbH collaborators