Time filter

Source Type

Patent
Knorr Bremse Systeme fur Schienenfahrzeuge GmbH | Date: 2016-11-21

An electric parking brake, in particular for a commercial vehicle, has at least two compressed-air outputs, an electrically controllable valve arrangement for controlling a distribution of compressed air to the compressed-air outputs and including a bistable valve, and a compressed-air input which can be connected to a compressed-air supply for supplying compressed air from a compressor and/or from a compressed-air reservoir to the valve arrangement and to the compressed-air outputs. The electronic parking brake has as small a number of switchable valves as possible and reliably supplies compressed air to the compressed-air outputs. The bistable valve is supplied with compressed air at the input end by the compressed-air supply at least during a de-energized state of the valve arrangement. The compressed air is at a pressure which is made available by the compressor and/or the compressed-air reservoir.


An electropneumatic brake control device controls a parking brake of a vehicle with a service brake and the parking brake. It includes an electromagnetic valve device which can be supplied with compressed air from a compressed air storage via a storage connection; a parking brake signal connection for inputting parking brake signals output by an electric parking brake signaling device; and an air quantity-boosting valve device which is pneumatically controlled by the electromagnetic valve device and which has a working outlet that can be connected to a first outlet connection for at least one spring applied brake cylinder. A control air line is provided between an outlet of the electromagnetic valve device and a pneumatic control inlet of the air quantity-boosting valve device. A pneumatically controlled 2/2-way valve has an inlet which can be connected to the control air line or the working outlet of the air quantity-boosting valve device, an outlet which is connected to a pressure sink, and a pneumatic control connection for a stored pressure of the service brake. The pneumatically controlled 2/2-way valve has two positions: a conducting position, which is smaller than a specified threshold value in the event of a stored pressure of the service brake and in which the inlet is connected to the outlet, and a blocking position, which is larger than a specified pressure threshold in the event of a stored pressure of the service brake and in which the inlet is blocked from the outlet.


Patent
Knorr Bremse Systeme fur Schienenfahrzeuge GmbH | Date: 2016-11-22

A disc brake, preferably pneumatically actuated, in particular for a motor vehicle, including a brake disc with a brake disc axis, a brake caliper, in particular a sliding caliper, with a brake application section and a caliper back which are connected via rension struts, and at least two brake pads with in each case one brake pad carrier. Of the brake pads, an application-side brake pad is assigned to the brake application section and a back-side brake pad is assigned to the caliper back. The brake pad carrier of the back-side brake pad and the caliper back of the brake caliper are in contact via at least one pair of contact surfaces. One contact surface of the at least one pair of contact surfaces is an end surface of a projection, and the other contact surface of the at least one pair of contact surfaces is a bottom surface of a recess.


Grant
Agency: Cordis | Branch: H2020 | Program: Shift2Rail-RIA | Phase: S2R-CFM-IP5-01-2015 | Award Amount: 3.48M | Year: 2016

The FR8RAIL project proposal is submitted as part of the Shift2Rail Research and Innovation Action. Within the FR8RAIL project proposal there are eighteen European partners. The main aim of the FR8RAIL project proposal is the development of functional requirements for a sustainable and attractive European rail freight. These objectives of FR8RAIL are: A 10 % reduction in the cost of freight transport measured by tonnes per Km. A 20 % reduction in the time variations during dwelling and increase attractiveness of logistic chains by making available 100 % of the rail freight transport information to logistic chain information systems. The objectives of the FR8RAIL project will be achieved by developing a number of vital areas within freight rail. There are six main areas of work that form the backbone of this proposals approach in achieving the development of functional requirements for a sustainable and attractive European rail freight. The work areas are 1) Business Analytics, KPIs, Top Level Requirements, 2) Condition Based and Predictive Maintenance, 3) Telematics & Electrification, 4) Running Gear, Core and Extended Market Wagon, 5) Automatic Coupling, 6) High level System Architecture and Integration. The outcome of FR8RAIL and its deliverables are expected to positively contribute to and support the Shift2Rail goals set out in the Strategic Masterplan and the Multi Annual Action Plan viz. to strengthen the role of rail in the transport system, and in particular freight rail transport.


Grant
Agency: Cordis | Branch: H2020 | Program: Shift2Rail-RIA | Phase: S2R-CFM-IP1-01-2016 | Award Amount: 12.98M | Year: 2016

The PINTA Project (IP1 Traction TD1 and Brakes TD5 Phase 1) will address the two key topics highlighted in the first Shift2Rail Call topic S2R-CFM-IP1-01-2016 Development of concepts towards the next generation of traction systems and management of wheel/rail adhesion, namely Traction and Adhesion Management. Traction subproject will focus on the improvement of seven technical and economical performances of the Traction system that have been agreed and defined in Roll2Rail. These performances have to be improved on five different train applications having different constraints, needs and specificities, from tramway to HST, including metro, sub-urban, regional trains. In particular, Traction sub-project will address the following: 1) Line capacity increase through weight, volume and noise savings of Traction equipment. 2) Operational reliability increase via higher reliability/availability. 3) Railway system LCC reduction As far as Adhesion management is concerned, the work will lead to the achievement of a number of important objectives linked to Brakes, such as Improvement of braking degradation limit in poor adhesion condition Management of all adhesion conditions in a way that brake distances are optimized Improvement of the overall train safety, which relies substantially on the management of the wheel/rail contact Reduction of wheel Life-Cycle-Costs (LCCs) through optimized wheel/rail contact in braking The activities should contribute in formulating new performance specifications for Adhesion Recovery Systems. Moreover, improved requirements for Wheel Slide Protection test procedures should be developed, followed by new specifications for Automatic Test benches.


Grant
Agency: Cordis | Branch: H2020 | Program: Shift2Rail-RIA | Phase: S2R-CFM-IP1-02-2016 | Award Amount: 5.91M | Year: 2016

CONNECTA aims at contributing to the S2Rs next generation of TCMS architectures and components with wireless capabilities as well as to the next generation of electronic braking systems. CONNECTA will conduct research into new technological concepts, standard specifications and architectures for train control and monitoring, with specific applications in train-to-ground communications and high safety electronic control of brakes. The specific actions to be undertaken within the scope of CONNECTA contributing to the S2R Multi-Annual Action Plan on TD1.2 and TD1.5 are: To develop the general specifications of next generation TCMS and to generate the corresponding high level system architecture; To incorporate wireless technologies to train communication network solutions; To provide a train-wide communication network for full TCMS support including the replacement of train lines, connecting safety functions up to SIL4 and support of fail-safe and fail-tolerant principles, to provide an optimal train network for TCMS & OMTS (Onboard Multimedia and Telematic Services) as well as communication mean for non-TCMS functions; To standardise functional interfaces of functions and sub systems as well as to define a generic functional architecture for the next TCMS generation; To facilitate the coupling of two or more consists supplied by different manufacturers and which could have different train functions; To develop a simulation framework in which all subsystems of the train can be simulated, allowing remote and distributed testing including hardware in-the-loop through heterogeneous communication networks; To achieve a performance improvement in safety relevant braking functions resulting in optimisation of the braking distances in safety braking; To optimise onboard systems by reducing the number of sophisticated pneumatic components and improving the overall LCC; To validate non-railway EN standards for use in safety-related railway applications.


Grant
Agency: Cordis | Branch: H2020 | Program: RIA | Phase: MG-2.3-2014 | Award Amount: 16.00M | Year: 2015

The ROLL2RAIL project aims to develop key technologies and to remove already identified blocking points for radical innovation in the field of railway vehicles, as part of a longer term strategy to revolutionise the rolling stock for the future. The high level objectives of the work are to pave the way to: Increase the capacity of the railway system and bring flexibility to adapt capacity to demand Increase availability, operational reliability and therefore punctuality of the vehicles Reduce the life cycle costs of the vehicle and the track Increase the energy efficiency of the system Improve passenger comfort and the attractiveness of rail transport Specific developments are proposed the scope of ROLL2RAIL: Basis of a radically new traction technology based on emerging electronic components leading towards more energy-efficient traction, which is lighter and more reliable while reducing the noise emitted New wireless technology applied to train control functionalities will allow more flexible coupling to increase line capacity Carbody solutions based on lightweight composite materials to reduce weight A way of quantifying the life-cycle cost impact of new technological solutions for running gear; Knowledge database of the variety of requirements in Europe for the braking systems to bring down barriers to step-change innovation in this area Standardised methodologies for assessing attractiveness and comfort from the passengers point of view Methodology for noise source separation techniques allowing implementation of novel and more efficient noise mitigation measures It is also the objective of ROLL2RAIL to serve as a preparation for a fast and smooth start up of the large scale initiative SHIFT2RAIL. All ROLL2RAIL results will ultimately lead to demonstration in real vehicles or relevant environments in SHIFT2RAIL.


Patent
Knorr Bremse Systeme fur Schienenfahrzeuge GmbH | Date: 2016-06-06

The invention relates to an arrangement of a brake disk on a wheel hub of a utility vehicle, wherein the wheel hub has a hub body, which accommodates at least one rolling-element bearing, and a wheel carrier. Said arrangement is designed in such a way that the wheel carrier is designed as a component that is separate from the hub body and connected to the hub body and the wheel carrier has a neck segment that at least partially surrounds the huh body, on which neck segment the brake disk is retained in such a way that the brake disk is rotationally secured in the circumferential direction in a form closed manner, wherein the wheel carrier has an inner ring extending radially, which ring has passage holes for screws, which are screwed into end-face threaded holes of the axle body.


Patent
Knorr Bremse Systeme fur Schienenfahrzeuge GmbH | Date: 2016-03-31

A sliding caliper disk brake is provided, in which a stationary brake carrier configured to carry a brake caliper includes two pairs of carrier horns, one pair of which supports a reaction-side brake pad and one pair of which supports an application side brake pad. The spacing between the reaction-side pair of carrier horns is larger than the spacing between the application-side pair of carrier horns. The reaction-side brake pad and reaction-side pair of carrier horns may be shorter than the corresponding application-side brake pad and carrier horns. The arrangement of the brake carrier, the brake caliper and the brake pads permits reduction in disk brake weight, cost and brake carrier stresses while providing desired brake thermal, mechanical and service life performance.


Patent
Knorr Bremse Systeme fur Schienenfahrzeuge GmbH | Date: 2016-01-12

A brake pad retainer is provided for a disc brake for a commercial vehicle. A pad retaining bracket is supported by pad retaining springs on both sides of a brake disc on a brake pad arranged in a brake caliper. The pad retaining bracket tensions a mounting opening of the brake caliper in the direction of the axis of the brake disc and is maintained at least on one side by a bolt-shaped securing element in a securing eye of the brake caliper. The brake pad retainer is designed such that the securing element is formed from an eccentric bolt having a shaft and at least one eccentric section which is positioned so that it is axially offset with respect the shaft.

Loading Knorr Bremse Systeme fur Schienenfahrzeuge GmbH collaborators
Loading Knorr Bremse Systeme fur Schienenfahrzeuge GmbH collaborators