Time filter

Source Type

Edmonton, Canada

Kneteman N.M.,University of Alberta | Asthana S.,University of Alberta | Lewis J.,University of Alberta | Dibben C.,University of Alberta | And 4 more authors.
Liver Transplantation | Year: 2012

Cyclosporine A (CSA) has potent effects against hepatitis C virus (HCV) in vitro, but its clinical efficacy after liver transplantation (LT) is uncertain. We evaluated the impact of CSA and tacrolimus (TAC) with or without concomitant interferon (IFN) therapy on serum HCV titers in a chimeric mouse model of HCV infection. Six groups of HCV-infected mice received only the vehicle, IFN, CSA, CSA and IFN, TAC, or TAC and IFN for 4 weeks. The quantitative HCV polymerase chain reaction levels were determined after 1, 2, and 4 weeks of drug administration. There were no significant differences in the HCV titers after 4 weeks of treatment between the non-IFN-treated groups (log HCV titers: 3.5 ± 0.3 for the vehicle group, 4.4 ± 0.6 for the CSA group, and 4.3 ± 0.4 for the TAC group, P = 0.3). Although IFN had a consistent effect of reducing HCV titers across the groups, there was no significant impact of CSA on HCV levels when it was used alone or in combination with IFN at any time point. The 4-week HCV titers were as follows: 3.2 ± 0.3 for the IFN group, 4.7 ± 0.4 for the CSA/IFN group, and 4.0 ± 0.5 for the TAC/IFN group (P = 0.07). The CSA/IFN and TAC/IFN groups did not differ significantly (P = 0.6). Six of the 7 animals in the IFN group (85.7%) had an HCV titer decline ≥ 1 log, whereas in the test groups (CSA/IFN and TAC/IFN), 6 of 9 animals (66.7%) achieved a 1-log decline in the HCV titer (P = 1). Using this animal model, we could find no evidence supporting the routine use of CSA after LT in HCV-infected patients. Copyright © 2011 American Association for the Study of Liver Diseases. Source

Foster J.R.,Astrazeneca | Lund G.,KMT Hepatech Inc. | Sapelnikova S.,KMT Hepatech Inc. | Tyrrell D.L.,KMT Hepatech Inc. | And 3 more authors.
Xenobiotica | Year: 2014

1. Immunocompromised mice with humanized livers were developed in the mid-1990s to allow the study of human hepatotropic viruses, which normally replicate only in higher primates. The production of the uPA/SCID mouse was the vanguard of these models and remains the most widely worked upon model for an ever increasing range of applications. 2. Since toxicology is conducted in laboratory animal species with the implicit intent of predicting the outcome of accidental, or intentional, human exposure, the potential for using an in vivo model with a humanised metabolism opens up the possibility of better predicting the human response following exposure to drugs and industrial chemicals. Chimeric humanised mice provide the tool for bridging between the non-clinical laboratory safety and metabolism studies, carried out in rodent and non-rodent species, and the first in man clinical trials. 3. Chimeric mice carrying a human liver have now been validated against a wide range of different drugs and chemical classes, and have been shown to clearly differentiate metabolically from the recipient mouse, and to show metabolic pathways more similar to those expected from human liver. 4. This review critically appraises the available animal models carrying human livers and where future developments would improve the existing systems. © 2014 Informa UK Ltd. All rights reserved: reproduction in whole or part not permitted. Source

Takebe Y.,Japan National Institute of Infectious Diseases | Saucedo C.J.,SAIC | Lund G.,KMT Hepatech Inc. | Uenishi R.,Japan National Institute of Infectious Diseases | And 9 more authors.
PLoS ONE | Year: 2013

Hepatitis C virus (HCV) infection is a significant public health problem with over 170,000,000 chronic carriers and infection rates increasing worldwide. Chronic HCV infection is one of the leading causes of hepatocellular carcinoma which was estimated to result in ∼10,000 deaths in the United States in the year 2011. Current treatment options for HCV infection are limited to PEG-ylated interferon alpha (IFN-α), the nucleoside ribavirin and the recently approved HCV protease inhibitors telaprevir and boceprevir. Although showing significantly improved efficacy over the previous therapies, treatment with protease inhibitors has been shown to result in the rapid emergence of drug-resistant virus. Here we report the activity of two proteins, originally isolated from natural product extracts, which demonstrate low or sub-nanomolar in vitro activity against both genotype I and genotype II HCV. These proteins inhibit viral infectivity, binding to the HCV envelope glycoproteins E1 and E2 and block viral entry into human hepatocytes. In addition, we demonstrate that the most potent of these agents, the protein griffithsin, is readily bioavailable after subcutaneous injection and shows significant in vivo efficacy in reducing HCV viral titers in a mouse model system with engrafted human hepatocytes. These results indicate that HCV viral entry inhibitors can be an effective component of anti-HCV therapy and that these proteins should be studied further for their therapeutic potential. Source

Douglas D.N.,University of Alberta | Kawahara T.,University of Alberta | Sis B.,University of Alberta | Bond D.,University of Alberta | And 6 more authors.
PLoS ONE | Year: 2010

Background: Severe Combined Immune Deficient (SCID)/Urokinase-type Plasminogen Activator (uPA) mice undergo liver failure and are useful hosts for the propagation of transplanted human hepatocytes (HH) which must compete with recipient-derived hepatocytes for replacement of the diseased liver parenchyma. While partial replacement by HH has proven useful for studies with Hepatitis C virus, complete replacement of SCID/uPA mouse liver by HH has never been achieved and limits the broader application of these mice for other areas of biomedical research. The herpes simplex virus type-1 thymidine kinase (HSVtk)/ganciclovir (GCV) system is a powerful tool for cell-specific ablation in transgenic animals. The aim of this study was to selectively eliminate murine-derived parenchymal liver cells from humanized SCID/uPA mouse liver in order to achieve mice with completely humanized liver parenchyma. Thus, we reproduced the HSVtk (vTK)/GCV system of hepatic failure in SCID/uPA mice. Methodology/Principal Findings: In vitro experiments demonstrated efficient killing of vTK expressing hepatoma cells after GCV treatment. For in vivo experiments, expression of vTK was targeted to the livers of FVB/N and SCID/uPA mice. Hepatic sensitivity to GCV was first established in FVB/N mice since these mice do not undergo liver failure inherent to SCID/uPA mice. Hepatic vTK expression was found to be an integral component of GCV-induced pathologic and biochemical alterations and caused death due to liver dysfunction in vTK transgenic FVB/N and non-transplanted SCID/uPA mice. In SCID/uPA mice with humanized liver, vTK/GCV caused death despite extensive replacement of the mouse liver parenchyma with HH (ranging from 32-87%). Surprisingly, vTK/GCV-dependent apoptosis and mitochondrial aberrations were also localized to bystander vTK-negative HH. Conclusions/Significance: Extensive replacement of mouse liver parenchyma by HH does not provide a secure therapeutic advantage against vTK/GCV-induced cytotoxicity targeted to residual mouse hepatocytes. Functional support by engrafted HH may be secured by strategies aimed at limiting this bystander effect. © 2010 Douglas et al. Source

Kawahara T.,University of Alberta | Douglas D.N.,University of Alberta | Lewis J.,University of Alberta | Lund G.,KMT Hepatech Inc. | And 6 more authors.
Transplant International | Year: 2010

Summary The severe combined immunodeficiency/albumin linked-urokinase type plasminogen activator (SCID/Alb-uPA) human liver chimeric mouse model has added a new dimension to studies of liver based human diseases and has important potential for study of human hepatic drug metabolism. However, it remains unclear if natural killer (NK) cell in SCID/Alb-uPA mice has an important negative impact on engraftment and expansion of human hepatocytes after transplantation. Here, we explore the role of mouse NK cells in the rejection of transplanted human hepatocytes in SCID/Alb-uPA mice. We assessed NK cell activity in vivo, using 125I-iodo-2′-deoxyuridine incorporation assay. Low serum human alpha-1 antitrypsin (hAAT, <10 μg/ml) recipients, representing graft failure, showed resistance to engraftment of MHC class I knockout marrow (indicating high NK cell activity), while NK cell-depleted low hAAT recipients and high hAAT (>100 μg/ml) recipients accepted MHC class I knockout marrow, indicating a correlation between low NK cell activity, in vivo, and high level human hepatocyte engraftment. We also showed that higher level engraftment of human hepatocytes was achieved in both NK cell-depleted SCID/Alb-uPA mice and Rag2-/-γc-/-/Alb-uPA (T,B and NK cell deficient) mice compared with untreated SCID/Alb-uPA mice. These results support a critical role for mouse NK cells in the rejection of human hepatocytes xenotransplanted to immunodeficient mice. © 2010 The Authors. Source

Discover hidden collaborations