Time filter

Source Type

Nagle C.M.,QIMR Berghofer Medical Research Institute | Dixon S.C.,QIMR Berghofer Medical Research Institute | Dixon S.C.,University of Queensland | Jensen A.,Danish Cancer Society | And 59 more authors.
British Journal of Cancer | Year: 2015

Background: Observational studies have reported a modest association between obesity and risk of ovarian cancer; however, whether it is also associated with survival and whether this association varies for the different histologic subtypes are not clear. We undertook an international collaborative analysis to assess the association between body mass index (BMI), assessed shortly before diagnosis, progression-free survival (PFS), ovarian cancer-specific survival and overall survival (OS) among women with invasive ovarian cancer. Methods: We used original data from 21 studies, which included 12 390 women with ovarian carcinoma. We combined study-specific adjusted hazard ratios (HRs) using random-effects models to estimate pooled HRs (pHR). We further explored associations by histologic subtype. Results: Overall, 6715 (54%) deaths occurred during follow-up. A significant OS disadvantage was observed for women who were obese (BMI: 30-34.9, pHR: 1.10 (95% confidence intervals (CIs): 0.99-1.23); BMI: ≥35, pHR: 1.12 (95% CI: 1.01-1.25)). Results were similar for PFS and ovarian cancer-specific survival. In analyses stratified by histologic subtype, associations were strongest for women with low-grade serous (pHR: 1.12 per 5 kg m -2) and endometrioid subtypes (pHR: 1.08 per 5 kg m -2), and more modest for the high-grade serous (pHR: 1.04 per 5 kg m -2) subtype, but only the association with high-grade serous cancers was significant. Conclusions: Higher BMI is associated with adverse survival among the majority of women with ovarian cancer. © 2015 Cancer Research UK. All rights reserved.

PubMed | Danish Cancer Society, University of Houston, Baylor College of Medicine, University of Southampton and 48 more.
Type: Journal Article | Journal: International journal of epidemiology | Year: 2016

Observational studies have reported a positive association between body mass index (BMI) and ovarian cancer risk. However, questions remain as to whether this represents a causal effect, or holds for all histological subtypes. The lack of association observed for serous cancers may, for instance, be due to disease-associated weight loss. Mendelian randomization (MR) uses genetic markers as proxies for risk factors to overcome limitations of observational studies. We used MR to elucidate the relationship between BMI and ovarian cancer, hypothesizing that genetically predicted BMI would be associated with increased risk of non-high grade serous ovarian cancers (non-HGSC) but not HGSC.We pooled data from 39 studies (14 047 cases, 23 003 controls) in the Ovarian Cancer Association Consortium. We constructed a weighted genetic risk score (GRS, partial F-statistic = 172), summing alleles at 87 single nucleotide polymorphisms previously associated with BMI, weighting by their published strength of association with BMI. Applying two-stage predictor-substitution MR, we used logistic regression to estimate study-specific odds ratios (OR) and 95% confidence intervals (CI) for the association between genetically predicted BMI and risk, and pooled these using random-effects meta-analysis.Higher genetically predicted BMI was associated with increased risk of non-HGSC (pooled OR=1.29, 95% CI 1.03-1.61 per 5 units BMI) but not HGSC (pooled OR=1.06, 95% CI 0.88-1.27). Secondary analyses stratified by behaviour/subtype suggested that, consistent with observational data, the association was strongest for low-grade/borderline serous cancers (OR=1.93, 95% CI 1.33-2.81).Our data suggest that higher BMI increases risk of non-HGSC, but not the more common and aggressive HGSC subtype, confirming the observational evidence.

PubMed | Karolinska Institutet, University of Cologne, The Broad Institute of MIT and Harvard, University of Houston and 88 more.
Type: Journal Article | Journal: Cancer discovery | Year: 2016

Breast, ovarian, and prostate cancers are hormone-related and may have a shared genetic basis, but this has not been investigated systematically by genome-wide association (GWA) studies. Meta-analyses combining the largest GWA meta-analysis data sets for these cancers totaling 112,349 cases and 116,421 controls of European ancestry, all together and in pairs, identified at P < 10(-8) seven new cross-cancer loci: three associated with susceptibility to all three cancers (rs17041869/2q13/BCL2L11; rs7937840/11q12/INCENP; rs1469713/19p13/GATAD2A), two breast and ovarian cancer risk loci (rs200182588/9q31/SMC2; rs8037137/15q26/RCCD1), and two breast and prostate cancer risk loci (rs5013329/1p34/NSUN4; rs9375701/6q23/L3MBTL3). Index variants in five additional regions previously associated with only one cancer also showed clear association with a second cancer type. Cell-type-specific expression quantitative trait locus and enhancer-gene interaction annotations suggested target genes with potential cross-cancer roles at the new loci. Pathway analysis revealed significant enrichment of death receptor signaling genes near loci with P < 10(-5) in the three-cancer meta-analysis.We demonstrate that combining large-scale GWA meta-analysis findings across cancer types can identify completely new risk loci common to breast, ovarian, and prostate cancers. We show that the identification of such cross-cancer risk loci has the potential to shed new light on the shared biology underlying these hormone-related cancers. Cancer Discov; 6(9); 1052-67. 2016 AACR.This article is highlighted in the In This Issue feature, p. 932.

PubMed | Danish Cancer Society, Institute of Oncology, University of Houston, Institute For Humangenetik and 56 more.
Type: Journal Article | Journal: Journal of genetics and genome research | Year: 2016

Disruption in circadian gene expression, whether due to genetic variation or environmental factors (e.g., light at night, shiftwork), is associated with increased incidence of breast, prostate, gastrointestinal and hematologic cancers and gliomas. Circadian genes are highly expressed in the ovaries where they regulate ovulation; circadian disruption is associated with several ovarian cancer risk factors (e.g., endometriosis). However, no studies have examined variation in germline circadian genes as predictors of ovarian cancer risk and invasiveness. The goal of the current study was to examine single nucleotide polymorphisms (SNPs) in circadian genes

PubMed | Karolinska Institutet, University of Newcastle, Dr. Horst Schmidt Kliniken Wiesbaden, Medical University of South Carolina and 104 more.
Type: Journal Article | Journal: Journal of medical genetics | Year: 2016

The rarity of mutations in PALB2, CHEK2 and ATM make it difficult to estimate precisely associated cancer risks. Population-based family studies have provided evidence that at least some of these mutations are associated with breast cancer risk as high as those associated with rare BRCA2 mutations. We aimed to estimate the relative risks associated with specific rare variants in PALB2, CHEK2 and ATM via a multicentre case-control study.We genotyped 10 rare mutations using the custom iCOGS array: PALB2 c.1592delT, c.2816T>G and c.3113G>A, CHEK2 c.349A>G, c.538C>T, c.715G>A, c.1036C>T, c.1312G>T, and c.1343T>G and ATM c.7271T>G. We assessed associations with breast cancer risk (42671 cases and 42164 controls), as well as prostate (22301 cases and 22320 controls) and ovarian (14542 cases and 23491 controls) cancer risk, for each variant.For European women, strong evidence of association with breast cancer risk was observed for PALB2 c.1592delT OR 3.44 (95% CI 1.39 to 8.52, p=7.110This report adds to accumulating evidence that at least some variants in these genes are associated with an increased risk of breast cancer that is clinically important.

PubMed | Danish Cancer Society, Medical University of South Carolina, Institute For Humangenetik, University of California at Los Angeles and 53 more.
Type: Journal Article | Journal: PloS one | Year: 2015

Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk.In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons.The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4).These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes.

PubMed | Research Division, Danish Cancer Society, Institute of Oncology, Medical University of South Carolina and 52 more.
Type: Journal Article | Journal: Genetic epidemiology | Year: 2016

Epithelial-mesenchymal transition (EMT) is a process whereby epithelial cells assume mesenchymal characteristics to facilitate cancer metastasis. However, EMT also contributes to the initiation and development of primary tumors. Prior studies that explored the hypothesis that EMT gene variants contribute to epithelial ovarian carcinoma (EOC) risk have been based on small sample sizes and none have sought replication in an independent population. We screened 15,816 single-nucleotide polymorphisms (SNPs) in 296 genes in a discovery phase using data from a genome-wide association study of EOC among women of European ancestry (1,947 cases and 2,009 controls) and identified 793 variants in 278 EMT-related genes that were nominally (P < 0.05) associated with invasive EOC. These SNPs were then genotyped in a larger study of 14,525 invasive-cancer patients and 23,447 controls. A P-value <0.05 and a false discovery rate (FDR) <0.2 were considered statistically significant. In the larger dataset, GPC6/GPC5 rs17702471 was associated with the endometrioid subtype among Caucasians (odds ratio (OR) = 1.16, 95% CI = 1.07-1.25, P = 0.0003, FDR = 0.19), whereas F8 rs7053448 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), F8 rs7058826 (OR = 1.69, 95% CI = 1.27-2.24, P = 0.0003, FDR = 0.12), and CAPN13 rs1983383 (OR = 0.79, 95% CI = 0.69-0.90, P = 0.0005, FDR = 0.12) were associated with combined invasive EOC among Asians. In silico functional analyses revealed that GPC6/GPC5 rs17702471 coincided with DNA regulatory elements. These results suggest that EMT gene variants do not appear to play a significant role in the susceptibility to EOC.

PubMed | Karolinska Institutet, Danish Cancer Society, University of Houston, Research Division and 56 more.
Type: Journal Article | Journal: Oncotarget | Year: 2016

Regulatory T (Treg) cells, a subset of CD4+ T lymphocytes, are mediators of immunosuppression in cancer, and, thus, variants in genes encoding Treg cell immune molecules could be associated with ovarian cancer.In a population of 15,596 epithelial ovarian cancer (EOC) cases and 23,236 controls, we measured genetic associations of 1,351 SNPs in Treg cell pathway genes with odds of ovarian cancer and tested pathway and gene-level associations, overall and by histotype, for the 25 genes, using the admixture likelihood (AML) method. The most significant single SNP associations were tested for correlation with expression levels in 44 ovarian cancer patients.The most significant global associations for all genes in the pathway were seen in endometrioid ( p = 0.082) and clear cell ( p = 0.083), with the most significant gene level association seen with TGFBR2 ( p = 0.001) and clear cell EOC. Gene associations with histotypes at p < 0.05 included: IL12 ( p = 0.005 and p = 0.008, serous and high-grade serous, respectively), IL8RA ( p = 0.035, endometrioid and mucinous), LGALS1 ( p = 0.03, mucinous), STAT5B ( p = 0.022, clear cell), TGFBR1 ( p = 0.021 endometrioid) and TGFBR2 ( p = 0.017 and p = 0.025, endometrioid and mucinous, respectively).Common inherited gene variation in Treg cell pathways shows some evidence of germline genetic contribution to odds of EOC that varies by histologic subtype and may be associated with mRNA expression of immune-complex receptor in EOC patients.

PubMed | University of Calgary, Danish Cancer Society, Royal Alexandra Hospital, Dana-Farber Cancer Institute and 12 more.
Type: | Journal: Cancer causes & control : CCC | Year: 2017

Cancer antigen 125 (CA125) is a glycoprotein expressed by epithelial cells of several normal tissue types and overexpressed by several epithelial cancers. Serum CA125 levels are mostly used as an aid in the diagnosis of ovarian cancer patients, to monitor response to treatment and detect cancer recurrence. Besides tumor characteristics, CA125 levels are also influenced by several epidemiologic factors, such as age, parity, and oral contraceptive use. Identifying factors that influence CA125 levels in ovarian cancer patients could aid in the interpretation of CA125 values for individuals.We evaluated predictors of pretreatment CA125 in 13 studies participating in the Ovarian Cancer Association Consortium. This analysis included a total of 5,091 women with invasive epithelial ovarian cancer with pretreatment CA125 measurements. We used probit scores to account for variability in CA125 between studies and linear regression to estimate the association between epidemiologic factors and tumor characteristics and pretreatment CA125 levels.In age-adjusted models, older age, history of pregnancy, history of tubal ligation, family history of breast cancer, and family history of ovarian cancer were associated with higher CA125 levels while endometriosis was associated with lower CA125 levels. After adjusting for tumor-related characteristics (stage, histology, grade), body mass index (BMI) higher than 30kg/mOur results suggest that high BMI and race may influence CA125 levels independent of tumor characteristics. Validation is needed in studies that use a single assay for CA125 measurement and have a diverse study population.

Loading Kliniken Essen Mitte Evang. Huyssens Stiftung Knappschaft GmbH collaborators
Loading Kliniken Essen Mitte Evang. Huyssens Stiftung Knappschaft GmbH collaborators