Time filter

Source Type

Milpitas, CA, United States

KLA-Tencor Corporation is an American manufacturing company based in Milpitas, California. It supplies process control and yield management products for the semiconductor, data storage, LED, and other related nanoelectronics industries. The company's products, software and services are designed to help integrated circuit manufacturers manage yield throughout the entire fabrication process — from research and development to final volume production. Wikipedia.

Metrology methods and targets are provided, for estimating inter-cell process variation by deriving, from overlay measurements of at least three target cells having different designed misalignments, a dependency of a measured inaccuracy on the designed misalignments (each designed misalignment is between at least two overlapping periodic structures in the respective target cell). Inaccuracies which are related to the designed misalignments are reduced, process variation sources are detected and targets and measurement algorithms are optimized according to the derived dependency.

This inspection system has an optical head, a support system, and a controller in electrical communication with the support system. The support system is configured to provide movement to the optical head with three degrees of freedom. The controller is programmed to control movement of the optical head using the support system such that the optical head maintains a constant angle of incidence relative to a wafer surface while imaging a circumferential edge of the wafer. An edge profiler may be scanned across the wafer to determine an edge profile. A trajectory of the optical head can be determined using the edge profile.

The invention relates to an image acquisition system and an image acquisition method, as well as to an inspection system having at least one such image acquisition system. A projector projects a pattern on a surface of a sample, a camera records light intensity information from within at least two detection fields defined by the camera on the surface of the sample. A relative motion between the sample on the one hand and the camera and projector on the other hand is generated. From the acquired at least one image a height profile of the surface of the sample may be inferred. The pattern may comprise a number of sub-patterns related to each other by a phase shift. Alternatively, the pattern may be a fringe pattern.

Disclosed is a scatterometry mark for determining an overlay error, critical dimension, or profile of the mark. The mark includes a first plurality of periodic structures on a first layer, a second plurality of periodic structures on a second layer, and a third plurality of periodic structures on a third layer that is underneath the first and second layer. The third periodic structures are perpendicular to the first and second structures, and the third periodic structures have one or more characteristics so as to result in a plurality of lower structures beneath the third periodic structures being screened from significantly affecting at least part of a spectrum of a plurality of scattered signals detected from the first and second periodic structures for determining an overlay error, critical dimension, or profile of the first and second periodic structures or at least one of such detected scattered signals.

KLA Tencor | Date: 2015-01-12

A pick-and-place head for picking a plurality of work-pieces from at least one first location and for placing the plurality of work-pieces at least one second location is disclosed. The pick-and-place head exhibits a plurality of nozzles, wherein each nozzle is configured to engage one of the work-pieces by action of a vacuum. At least one nozzle has an individual vacuum supply and at least two further nozzles have a shared vacuum supply. A corresponding method is also disclosed, the method including the steps of approaching at least one of the plurality of work-pieces with a respective nozzle and then starting generation of a vacuum at each respective nozzle. The generation of vacuum in at least one nozzle is achieved by an individual vacuum supply, and generation of vacuum in at least two further nozzles is achieved by a shared vacuum supply of the at least two further nozzles.

Discover hidden collaborations