Time filter

Source Type

Lubbock, TX, United States

Cobos C.,Texas Tech University | Figueroa J.A.,Texas Tech University | Figueroa J.A.,Laura W Bush Institute For Womens Health | Figueroa J.A.,Kiromic LLC | And 23 more authors.
International Reviews of Immunology | Year: 2014

Over the past 30 years, human papilloma virus (HPV) has been shown to play a role in the development of various cancers. Most notably, HPV has been linked to malignant progression in neoplasms of the anogenital region. However, high-risk HPV has also been suggested to play a significant role in the development of cancers in other anatomic locations, such as the head and neck, lung, breast and bladder. In 2006, the first vaccine for HPV, Gardasil, was approved for the prevention of subtypes 6, 11, 16 and 18. A few years later, Cevarix was approved for the prevention of subtypes 16 and 18, the HPV subtypes most frequently implicated in malignant progression. Although increased awareness and vaccination could drastically decrease the incidence of HPV-positive cancers, these approaches do not benefit patients who have already contracted HPV and developed cancer as a result. For this reason, researchers need to continue developing treatment modalities, such as targeted immunotherapies, for HPV-positive lesions. Here, we review the potential evidence linking HPV infection with the development of non-anogenital cancers and the potential role of immunotherapy in the prevention and eradication of HPV infection and its oncogenic sequela. © 2014 Informa Healthcare USA, Inc.

Colombo M.,University of Milan | Colombo M.,Texas Tech University Health Sciences Center | Mirandola L.,Texas Tech University Health Sciences Center | Mirandola L.,Kiromic LLC | And 17 more authors.
International Reviews of Immunology | Year: 2015

Tumor initiating cells (TICs) differ from normal stem cells (SCs) in their ability to initiate tumorigenesis, invasive growth, metastasis and the acquisition of chemo and/or radio-resistance. Over the past years, several studies have indicated the potential role of the Notch system as a key regulator of cellular stemness and tumor development. Furthermore, the expression of cancer testis antigens (CTA) in TICs, and their role in SC differentiation and biology, has become an important area of investigation. Here, we propose a model in which CTA expression and Notch signaling interacts to maintain the sustainability of self-replicating tumor populations, ultimately leading to the development of metastasis, drug resistance and cancer progression. We hypothesize that Notch-CTA interactions in TICs offer a novel opportunity for meaningful therapeutic interventions in cancer. © 2015 Informa Healthcare USA, Inc.

Arnaboldi F.,University of Milan | Menon A.,University of Milan | Menegola E.,University of Milan | Di Renzo F.,University of Milan | And 10 more authors.
International Reviews of Immunology | Year: 2014

Sperm protein 17 (Sp17) was originally identified in the flagellum of spermatozoa and subsequently included in the subfamily of tumor-associated antigens known as cancer-testes antigens (CTA). Sp17 has been associated with the motility and migratory capacity in tumor cells, representing a link between gene expression patterns in germinal and tumor cells of different histological origins. Here we review the relevance of Sp17 expression in the mouse embryo and cancerous tissues, and present additional data demonstrating Sp17 complex expression pattern in this murine model. The expression of Sp17 in embryonic as well as adult neoplastic cells, but not normal tissues, suggests this protein should be considered an "oncofetal antigen." Further investigations are necessary to elucidate the mechanisms and functional significance of Sp17 aberrant expression in human adult cells and its implication in the pathobiology of cancer. © 2014 Informa Healthcare USA, Inc.

Cao M.,Central Arkansas Veterans Healthcare System | Theus S.A.,Central Arkansas Veterans Healthcare System | Straub K.D.,Central Arkansas Veterans Healthcare System | Figueroa J.A.,Kiromic LLC | And 4 more authors.
Journal of Translational Medicine | Year: 2015

Inflammation is a key etiologic component in atherogenesis. Previously we demonstrated that adeno-associated virus (AAV) 2/8 gene delivery of Netrin1 inhibited atherosclerosis in the low density lipoprotein receptor knockout mice on high-cholesterol diet (LDLR-KO/HCD). One important finding from this study was that FOXP3 was strongly up-regulated in these Netrin1-treated animals, as FOXP3 is an anti-inflammatory gene, being the master transcription factor of regulatory T cells. These results suggested that the FOXP3 gene might potentially be used, itself, as an agent to limit atherosclerosis. To test this hypothesis AAV2/8 (AAV)/hFOXP3 or AAV/Neo (control) gene therapy virus were tail vein injected into the LDLR-KO/HCD animal model. It was found that hFOXP3 gene delivery was associated with significantly lower HCD-induced atherogenesis, as measured by larger aortic lumen cross sectional area, thinner aortic wall thickness, and lower aortic systolic blood velocity compared with Neo gene-HCD-treated controls. Moreover these measurements taken from the hFOXP3/HCD-treated animals very closely matched those measurements taken from the normal diet (ND) control animals. These data strongly suggest that AAV/hFOXP3 delivery gave a robust anti-atherosclerosis therapeutic effect and further suggest that FOXP3 be examined more stringently as a therapeutic gene for clinical use. © 2015 Cao et al.

Mirandola L.,Texas Tech University | Mirandola L.,Laura W Bush Institute For Womens Health | Nguyen D.D.,Texas Tech University | Nguyen D.D.,Laura W Bush Institute For Womens Health | And 14 more authors.
International Reviews of Immunology | Year: 2014

Here we review the role of Galectins in the molecular pathogenesis of multiple myeloma and ovarian cancer, with a special focus on Glectin-3. Multiple myeloma is the second most common hematologic malignancy worldwide. Because the pathogenesis of multiple myeloma is still incompletely understood, there is no ultimately effective cure, and this cancer results fatal. Ovarian cancer is the most lethal gynecologic malignancy worldwide. Due to the lack of screening techniques for early detection, patients are mostly diagnosed with advanced disease, which results ultimately fatal. Multiple myeloma and ovarian cancer have different biologies, but they share a strong dependence on adhesion with extracellular matrix and other cells. Galectin-3 plays a key role in regulating such adhesive abilities of tumor cells. Here we discuss the outcomes and possible mechanism of action of a truncated, dominant negative form of Galectin-3, Galectin-3C, in these malignancies. Overall, we report that Galectin-3C is a promising new compound for effective adjuvant therapies in advanced, refractory multiple myeloma and ovarian cancer. © 2014 Informa Healthcare USA, Inc.

Discover hidden collaborations