Riyadh, Saudi Arabia
Riyadh, Saudi Arabia

King Saud University is a public university located in Riyadh, Saudi Arabia. It was founded in 1957 by King Saud bin Abdul Aziz as Riyadh University, as the first university in the kingdom not dedicated to religious subjects. The university was created to meet the shortage of skilled workers in Saudi Arabia. It was renamed to King Saud University in 1982. The student body of KSU today consists of about 37,874 students of both sexes. Wikipedia.

Time filter

Source Type

King Saud University | Date: 2015-09-30

The synthetic recycled plastic aggregate for use in concrete is a composite material containing between 30% and 50% by weight shredded recycled plastic, the balance being a filler embedded in a matrix of the recycled plastic. The recycled plastic includes polyethylene terephthalate (PET). The filler can include dune sand, fly ash and quarry fines. The synthetic recycled plastic aggregate is best used to make concrete with a water-to-cement ratio of at least 0.5.

King Saud University | Date: 2015-09-29

Novel -Glucosidase inhibitors include propanone substituted indole ring-containing heterocyclic compounds, which are represented by Formula I: Wherein

The method of ascertaining fully grown passive film formation on steel rebar embedded in concrete utilizes electrochemical impedance spectroscopy (EIS) to determine, in situ, the degree of passive film formation on steel rebar embedded in concrete. A length of steel rebar and a counter electrode are both embedded in a concrete slab. A reservoir is supported on an external face of the concrete slab and filled with an electrolytic solution. A reference electrode is then positioned in the electrolytic solution, and the length of steel rebar, the counter electrode and the reference electrode are electrically connected an EIS test instrument to perform electrochemical impedance spectroscopy. The quality of passive film formation on the length of steel rebar is determined based on comparison of the electrochemical impedance spectroscopy results with known passive film formation data.

King Saud University | Date: 2015-07-28

The spectral method for quantifying hemoglobin fragility caused by smoking is based on decreased concentration of tryptophan and elevated concentrations of the biomolecules nicotinamide adenine dinucleotide (NADH), flavin adenine dinucleotide (FAD), and porphyrin in the presence of hemoglobin fragility. The method involves the steps of obtaining a blood sample from a patient who is a smoker; separating blood plasma from the samples; obtaining synchronous excitation spectra (SXS) of the blood plasma with a spectrofluorometer at a scan offset of 70 nm and at a scan offset of 10 nm; comparing the patients SXS with the SXS of normal control samples; and diagnosing hemoglobin fragility when the excitation maxima of NADH, FAD, and porphyrin are between 30% and 70% higher than the maxima for these metabolites in the normal control samples, or when the excitation maximum for tryptophan is 60% of the control sample.

Agency: European Commission | Branch: FP7 | Program: CP-CSA | Phase: ENERGY.2013.10.1.10 | Award Amount: 21.20M | Year: 2014

Concentrating Solar Thermal Energy encompasses Solar Thermal Electricity (STE), Solar Fuels, Solar Process Heat and Solar Desalination that are called to play a major role in attaining energy sustainability in our modern societies due to their unique features: 1) Solar energy offers the highest renewable energy potential to our planet; 2) STE can provide dispatchable power in a technically and economically viable way, by means of thermal energy storage and/or hybridization, e.g. with biomass. However, significant research efforts are needed to achieve this goal. This Integrated Research Programme (IRP) engages all major European research institutes, with relevant and recognized activities on STE and related technologies, in an integrated research structure to successfully accomplish the following general objectives: a) Convert the consortium into a reference institution for concentrating solar energy research in Europe, creating a new entity with effective governance structure; b) Enhance the cooperation between EU research institutions participating in the IRP to create EU added value; c) Synchronize the different national research programs to avoid duplication and to achieve better and faster results; d) Accelerate the transfer of knowledge to industry in order to maintain and strengthen the existing European industrial leadership in STE; e) Expand joint activities among research centres by offering researchers and industry a comprehensive portfolio of research capabilities, bringing added value to innovation and industry-driven technology; f) Establish the European reference association for promoting and coordinating international cooperation in concentrating solar energy research. To that end, this IRP promotes Coordination and Support Actions (CSA) and, in parallel, performs Coordinated Projects (CP) covering the full spectrum of current concentrating solar energy research topics, selected to provide the highest EU added value and filling the gaps among national programs.

Syed S.,King Saud University
Hydrometallurgy | Year: 2012

This paper presents an overview of the various methodologies used in the recovery of gold from secondary sources. Gold recovery is interesting due to its vast industrial applications, high market prices and extensively used precious metal, the sanctuary value attributed to gold during international political and economical crises, and the limited resource of this metal may explain the recent increasing gold share value. The state of art in recovery of gold from spent sources by pyrometallurgy; hydrometallurgy; bio-hydrometallurgy techniques is highlighted in this paper. This article also provides an overview of past achievements and present scenario of recovery studies carried out on the use of some promising methods which could serve as an economical means for recovering gold. The present review also highlights the used varieties of leaching, cementing, reducing agents, peeling, coagulants, adsorbents, agglomeration solvents, ion exchange resins and bio-sorbents in real situations and hopes to provide insights into recovery of gold from spent sources. Evaluation of lucrative and environmentally friendly technologies to recover gold from primary and secondary spent sources was made in this study. © 2011 Elsevier B.V. All rights reserved.

Hepbasli A.,King Saud University
Renewable and Sustainable Energy Reviews | Year: 2012

Heating, cooling and lighting appliances in buildings account for more than one third of the world's primary energy demand and there are great potentials, which can be obtained through better applications of the energy use in buildings. In this regard, the building sector has a high potential for improving the quality match between energy supply and demand because high temperature sources are used to meet low-temperature heating needs. Low exergy (or LowEx) systems are defined as heating or cooling systems that allow the use of low valued energy, which is delivered by sustainable energy sources (i.e., through heat pumps, solar collectors, either separate or linked to waste heat, energy storage) as the energy source. These systems practically provide heating and cooling energy at a temperature close to room temperature while the so-called LowEx approach, which has been and still being successfully used in sustainable buildings design. The present study comprehensively reviews the studies conducted on LowEx heating and cooling systems for establishing the sustainable buildings. In this context, an introductory information is given first. Next, energy utilization and demand in buildings are summarized while various exergy definitions and sustainability aspects along with dead (reference) state are described. LowEx heating and cooling systems are then introduced. After that, LowEx relations used to estimate energy and exergy demand in buildings and key parameters for performance assessment and comparison purposes are presented. Finally, LowEx studies and applications conducted are reviewed while the last section concludes. The exergy efficiency values of the LowEx heating and cooling systems for buildings are obtained to range from 0.40% to 25.3% while those for greenhouses vary between 0.11% and 11.5%. The majority of analyses and assessments of LowEx systems are based on heating of buildings. © 2011 Elsevier Ltd. All rights reserved.

King Saud University | Date: 2016-05-06

The present disclosure introduces a nozzle apparatus and method. In one embodiment, a spray nozzle apparatus is described. The spray nozzle apparatus includes a plurality of flow channels formed by the combination of a: sprayhead, a major element, and a minor element. The sprayhead may have a plurality of holes. The major element is retained within the sprayhead by a nozzle nut and spring, allowing a first annular gap to form between the sprayhead and the major element. The minor element is retained within the major element by a second nozzle nut and second spring, allowing a second annular gap to form between the major element and the minor element. The minor element may have an axial hole. Other embodiments also are described.

King Saud University | Date: 2016-04-19

A multi-effects desalination system includes a plurality of vessels, including a first vessel, a second vessel, a third vessel, a fourth vessel, and a fifth vessel. Each vessel includes a plurality of heat tubes, a sprayer, and a housing including a preheater tube bundle. Each sprayer can be disposed above a respective plurality of heat tubes in each vessel for discharging saline water onto the plurality of heat tubes. A first tube connects a compressor unit with the first vessel. A second tube extends between a saline water source and a plurality of sprayers. Each vessel is configured to accommodate a different effect or stage of desalination occurring in the system. The housing can be configured for collecting fresh water. The fresh water collected in each housing can be transferred by the third tube to a fresh water tank.

Hedrich R.,University of Würzburg | Hedrich R.,King Saud University
Physiological Reviews | Year: 2012

Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type-and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow-and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution. © 2012 the American Physiological Society.

Loading King Saud University collaborators
Loading King Saud University collaborators