Entity

Time filter

Source Type


Nunes S.P.,King Abdullah University of Science and Engineering
Macromolecules | Year: 2016

Block copolymers are known for their intricate morphology. We review the state of the art of block copolymer membranes and discuss perspectives in this field. The main focus is on pore morphology tuning with a short introduction on nonporous membranes. The two main strategies for pore formation in block copolymer membranes are (i) film casting and selective block sacrifice and (ii) self-assembly and nonsolvent-induced phase separation (SNIPS). Different fundamental aspects involved in the manufacture of block copolymer membranes are considered, including factors affecting the equilibrium morphology in solid films, self-assembly of copolymer in solutions, and macrophase separation by solvent-nonsolvent exchange. Different mechanisms are proposed for different depths of the SNIPS membrane. Block copolymer membranes can be prepared with much narrower pore size distribution than homopolymer membranes. Open questions and indications of what we consider the next development steps are finally discussed. They include the synthesis and application of new copolymers and specific functionalization, adding characteristics to respond to stimuli and chemical environment, polymerization-induced phase separation, and the manufacture of organic-inorganic hybrids. © 2016 American Chemical Society. Source


Shi Y.,King Abdullah University of Science and Engineering | Bagci H.,King Abdullah University of Science and Engineering | Bagci H.,Center for Uncertainty Quantification in Computational Science and Engineering | Lu M.,West Virginia University Institute of Technology
IEEE Transactions on Antennas and Propagation | Year: 2013

Internal resonant modes are always observed in the marching-on-in-time (MOT) solution of the time domain electric field integral equation (EFIE), although 'relaxed initial conditions,' which are enforced at the beginning of time marching, should in theory prevent these spurious modes from appearing. It has been conjectured that, numerical errors built up during time marching establish the necessary initial conditions and induce the internal resonant modes. However, this conjecture has never been proved by systematic numerical experiments. Our numerical results in this communication demonstrate that, the internal resonant modes' amplitudes are indeed dictated by the numerical errors. Additionally, it is shown that in a few cases, the internal resonant modes can be made 'invisible' by significantly suppressing the numerical errors. These tests prove the conjecture that the internal resonant modes are induced by numerical errors when the time domain EFIE is solved by the MOT method. © 2013 IEEE. Source


Othman B.A.,Imperial College London | Greenwood C.,Anglia Ruskin University | Abuelela A.F.,King Abdullah University of Science and Engineering | Bharath A.A.,Imperial College London | And 7 more authors.
Advanced Healthcare Materials | Year: 2016

ZnO nanoparticles (NPs) are reported to show a high degree of cancer cell selectivity with potential use in cancer imaging and therapy. Questions remain about the mode by which the ZnO NPs cause cell death, whether they exert an intra- or extracellular effect, and the resistance among different cancer cell types to ZnO NP exposure. The present study quantifies the variability between the cellular toxicity, dynamics of cellular uptake, and dissolution of bare and RGD (Arg-Gly-Asp)-targeted ZnO NPs by MDA-MB-231 cells. Compared to bare ZnO NPs, RGD-targeting of the ZnO NPs to integrin αvβ3 receptors expressed on MDA-MB-231 cells appears to increase the toxicity of the ZnO NPs to breast cancer cells at lower doses. Confocal microscopy of live MDA-MB-231 cells confirms uptake of both classes of ZnO NPs with a commensurate rise in intracellular Zn2+ concentration prior to cell death. The response of the cells within the population to intracellular Zn2+ is highly heterogeneous. In addition, the results emphasize the utility of dynamic and quantitative imaging in understanding cell uptake and processing of targeted therapeutic ZnO NPs at the cellular level by heterogeneous cancer cell populations, which can be crucial for the development of optimized treatment strategies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Source


Shi Y.,King Abdullah University of Science and Engineering | Bagci H.,King Abdullah University of Science and Engineering | Lu M.,West Virginia University Institute of Technology
IEEE Antennas and Wireless Propagation Letters | Year: 2014

When marching-on-in-time (MOT) method is applied to solve the time-domain electric field integral equation, spurious internal resonant and static loop modes are always observed in the solution. The internal resonant modes have recently been studied by the authors; this letter investigates the static loop modes. Like internal resonant modes, static loop modes, in theory, should not be observed in the MOT solution since they do not satisfy the zero initial conditions; their appearance is attributed to numerical errors. It is discussed in this letter that the dependence of spurious static loop modes on numerical errors is substantially different from that of spurious internal resonant modes. More specifically, when Rao-Wilton-Glisson functions and Lagrange interpolation functions are used as spatial and temporal basis functions, respectively, errors due to space-time discretization have no discernible impact on spurious static loop modes. Numerical experiments indeed support this discussion and demonstrate that the numerical errors due to the approximate solution of the MOT matrix system have dominant impact on spurious static loop modes in the MOT solution. © 2014 IEEE. Source


Liu M.,King Abdullah University of Science and Engineering | Sirenko K.,King Abdullah University of Science and Engineering | Bagci H.,King Abdullah University of Science and Engineering
IEEE Transactions on Antennas and Propagation | Year: 2012

A discontinuous Galerkin finite element method (DG-FEM) with a highly accurate time integration scheme for solving Maxwell equations is presented. The new time integration scheme is in the form of traditional predictor-corrector algorithms, PE CE m, but it uses coefficients that are obtained using a numerical scheme with fully controllable accuracy. Numerical results demonstrate that the proposed DG-FEM uses larger time steps than DG-FEM with classical PE CE) m schemes when high accuracy, which could be obtained using high-order spatial discretization, is required. © 1963-2012 IEEE. Source

Discover hidden collaborations