Kinexus Bioinformatics Corporation

Vancouver, Canada

Kinexus Bioinformatics Corporation

Vancouver, Canada
Time filter
Source Type

Silva J.V.,University of Aveiro | Freitas M.J.,University of Aveiro | Correia B.R.,University of Aveiro | Korrodi-Gregorio L.,University of Aveiro | And 4 more authors.
Fertility and Sterility | Year: 2015

Objective To determine the correlation between semen basic parameters and the expression and activity of signaling proteins. Design In vitro studies with human spermatozoa. Setting Academic research institute. Patient(s) Thirty-seven men provided semen samples for routine analysis. Intervention(s) None. Main Outcome Measure(s) Basic semen parameters tracked included sperm DNA fragmentation (SDF), the expression levels of 75 protein kinases, and the phosphorylation/cleavage patterns of 18 signaling proteins in human spermatozoa. Result(s) The results indicated that the phosphorylated levels of several proteins (Bad, GSK-3β, HSP27, JNK/SAPK, mTOR, p38 MAPK, and p53), as well as cleavage of PARP (at D214) and Caspase-3 (at D175), were significantly correlated with motility parameters. Additionally, the percentage of morphologically normal spermatozoa demonstrated a significant positive correlation with the phosphorylated levels of p70 S6 kinase and, in turn, head defects and the teratozoospermia index (TZI) showed a significant negative correlation with the phosphorylated levels of Stat3. There was a significant positive correlation between SDF and the teratozoospermia index, as well as the presence of head defects. In contrast, SDF negatively correlated with the percentage of morphologically normal spermatozoa and the phosphorylation of Akt and p70 S6 kinase. Subjects with varicocele demonstrated a significant negative correlation between head morphological defects and the phosphorylated levels of Akt, GSK3β, p38 MAPK, and Stat1. Additionally, 34 protein kinases were identified as expressed in their total protein levels in normozoospermic samples. Conclusion(s) This study contributed toward establishing a biomarker "fingerprint" to assess sperm quality on the basis of molecular parameters. © 2015 American Society for Reproductive Medicine.

Zhang H.,Kinexus Bioinformatics Corporation | Pelech S.,Kinexus Bioinformatics Corporation | Pelech S.,University of British Columbia | Pelech S.,The Brain Research Center
Seminars in Cell and Developmental Biology | Year: 2012

Unraveling the complexity of cell regulatory systems and monitoring their operations under normal and pathological circumstances is one of the major outstanding biomedical challenges. The phosphoproteome has emerged as a rich source of biomarkers for tracking cell signaling and disease, and many of the kinases that phosphorylate proteins represent attractive targets for drug development. Over 100,000 phosphorylation sites distributed in most of the 23,000 proteins encoded by the human genome have already been identified in a non-targeted fashion by mass-spectrometry. Antibody microarrays permit ultra-sensitive, semi-quantitative measurements of the levels of hundreds of target proteins and their phosphorylation in parallel with specimens from cells and tissues. Conversely, reverse-phase protein microarrays (RPPMs) that are printed with crude cell/tissue lysates allow tracking of a target protein with a probing antibody in hundreds to thousands of cell and tissue samples simultaneously. While more than half a million commercial antibodies are available, the identification of highly specific and potent antibodies for use in microarrays remains a major impediment. Antibody cross-reactivity is an issue for both antibody microarrays and RPPMs. The low abundance of signal transduction proteins and their substoichiometric levels of phosphorylation are also problematic. Finally, non-denaturing conditions used with standard antibody microarrays permit protein complexes, which can produce false positives and false negatives. Changes in the level of an interacting protein may be misinterpreted as alterations in the amount of a target protein or its phosphorylation state. It is critical that leads from both types of microarrays are validated by complementary approaches such as immunoblotting and ELISA. More than a hundred reports have appeared in the scientific literature that have benefited from utilization of antibody and protein lysate microarrays. We have highlighted some of the pioneering works in this field and provided recent examples of their successful deployment as tools for broad-based, targeted proteomics research. © 2012 Elsevier Ltd.

Carter C.A.,Lorillard Tobacco Company | Misra M.,Lorillard Tobacco Company | Pelech S.,Kinexus Bioinformatics Corporation | Pelech S.,University of British Columbia
Journal of Proteome Research | Year: 2011

A short-term 5 day mainstream cigarette smoke exposure study was conducted in Fischer 344 rats to identify changes in lung proteins. Groups of 10 male and female rats at 5 weeks of age were assigned to one of four exposure groups. Animals received either nose-only filtered air (Air Control) or 75, 200, or 400 mg total particulate matter (TPM)/m 3 of diluted cigarette smoke. Exposures were conducted for 3 h per day, for 5 consecutive days. One lung per animal was frozen in liquid nitrogen and processed for proteomic analyses. Lung lysates from control verses treated animals were screened with 650 antibodies for changes in signaling protein levels and phosphorylation using antibody microarray technology, and then over 100 of the top protein hits were assessed by immunoblotting. The top smoke-altered proteins were further evaluated using reverse lysate microarrays. Major protein changes showed medium to strong bands on Western blots, depended on dose and gender, and included protein-serine kinases (Cot/Tpl2, ERK1/2, GSK3α/β, MEK6, PKCα/γ, RSK1), protein phosphatases (PP4/A′2, PP1Cβ), and other proteins (caspase 5, CRMP2, Hsc70, Hsp60, Rac1 and STAT2). The most pronounced changes occurred with 75 mg TPM/m 3 exposed females and 200 mg TPM/m 3 exposed males. Smoke-altered proteins regulate apoptosis, stress response, cell structure, and inflammation. Changes in identified proteins may serve as early indicators of lung damage. © 2011 American Chemical Society.

Davies A.H.,University of British Columbia | Barrett I.,University of British Columbia | Pambid M.R.,University of British Columbia | Hu K.,University of British Columbia | And 8 more authors.
Oncogene | Year: 2011

Y-box binding protein-1 (YB-1) expression in the mammary gland promotes breast carcinoma that demonstrates a high degree of genomic instability. In the present study, we developed a model of pre-malignancy to characterize the role of this gene during breast cancer initiation and early progression. Antibody microarray technology was used to ascertain global changes in signal transduction following the conditional expression of YB-1 in human mammary epithelial cells (HMEC). Cell cycle-associated proteins were frequently altered with the most dramatic being LIM kinase 1/2 (LIMK1/2). Consequently, the misexpression of LIMK1/2 was associated with cytokinesis failure that acted as a precursor to centrosome amplification. Detailed investigation revealed that YB-1 localized to the centrosome in a phosphorylation-dependent manner, where it complexed with pericentrin and γ-tubulin. This was found to be essential in maintaining the structural integrity and microtubule nucleation capacity of the organelle. Prolonged exposure to YB-1 led to rampant acceleration toward tumorigenesis, with the majority of cells acquiring numerical and structural chromosomal abnormalities. Slippage through the G1/S checkpoint due to overexpression of cyclin E promoted continued proliferation of these genomically compromised cells. As malignancy further progressed, we identified a subset of cells harboring HER2 amplification. Our results recognize YB-1 as a cancer susceptibility gene, with the capacity to prime cells for tumorigenesis. © 2011 Macmillan Publishers Limited All rights reserved.

Safaei J.,University of British Columbia | Manuch J.,University of British Columbia | Manuch J.,Simon Fraser University | Gupta A.,University of British Columbia | And 3 more authors.
Proteome Science | Year: 2011

Background: Complex intracellular signaling networks monitor diverse environmental inputs to evoke appropriate and coordinated effector responses. Defective signal transduction underlies many pathologies, including cancer, diabetes, autoimmunity and about 400 other human diseases. Therefore, there is high impetus to define the composition and architecture of cellular communications networks in humans. The major components of intracellular signaling networks are protein kinases and protein phosphatases, which catalyze the reversible phosphorylation of proteins. Here, we have focused on identification of kinase-substrate interactions through prediction of the phosphorylation site specificity from knowledge of the primary amino acid sequence of the catalytic domain of each kinase.Results: The presented method predicts 488 different kinase catalytic domain substrate specificity matrices in 478 typical and 4 atypical human kinases that rely on both positive and negative determinants for scoring individual phosphosites for their suitability as kinase substrates. This represents a marked advancement over existing methods such as those used in NetPhorest (179 kinases in 76 groups) and NetworKIN (123 kinases), which consider only positive determinants for kinase substrate prediction. Comparison of our predicted matrices with experimentally-derived matrices from about 9,000 known kinase-phosphosite substrate pairs revealed a high degree of concordance with the established preferences of about 150 well studied protein kinases. Furthermore for many of the better known kinases, the predicted optimal phosphosite sequences were more accurate than the consensus phosphosite sequences inferred by simple alignment of the phosphosites of known kinase substrates.Conclusions: Application of this improved kinase substrate prediction algorithm to the primary structures of over 23, 000 proteins encoded by the human genome has permitted the identification of about 650, 000 putative phosphosites, which are posted on the open source PhosphoNET website ( © 2011 Safaei et al; licensee BioMed Central Ltd.

Rogers L.D.,University of British Columbia | Brown N.F.,University of Melbourne | Fang Y.,University of British Columbia | Pelech S.,University of British Columbia | And 2 more authors.
Science Signaling | Year: 2011

Salmonella enterica is a bacterial pathogen that causes gastroenteritis and typhoid fever. Virulence is achieved by two type III secretion systems that translocate effector proteins into host cells where they mimic or block host protein function. Effectors translocated into host cells by the first type III secretion system facilitate invasion and stimulate intracellular signaling cascades leading to inflammation. Here, we performed global temporal analysis of host signaling events induced during the initial stages of Salmonella infection and identified the dynamics of host protein phosphorylation aswell as differences between growth factor-stimulated and bacteria-induced signaling. Informatics analysis predicted that sites with altered phosphorylation in infected cells were targeted by the serine-threonine kinases Akt, protein kinase C, and Pim and that up to half of the host phosphorylation events detected after Salmonella infection required the effector protein SopB. Our data reveal extensive manipulation of host phosphorylation cascades by this Salmonella effector and provide a detailed map of the events leading to intestinal inflammation, which is the crucial host response that enables Salmonella to proliferate in the intestine.

Lai S.,University of British Columbia | Pelech S.,University of British Columbia | Pelech S.,Kinexus Bioinformatics Corporation
Molecular Biology of the Cell | Year: 2016

The catalytic domains of most eukaryotic protein kinases are highly conserved in their primary structures. Their phosphorylation within the well-known activation T-loop, a variable region between protein kinase catalytic subdomains VII and VIII, is a common mechanism for stimulation of their phosphotransferase activities. Extracellular signalregulated kinase 1 (ERK1), a member of the extensively studied mitogen-activated protein kinase (MAPK) family, serves as a paradigm for regulation of protein kinases in signaling modules. In addition to the well-documented T202 and Y204 stimulatory phosphorylation sites in the activation T-loop of ERK1 and its closest relative, ERK2, three additional flanking phosphosites have been confirmed (T198, T207, and Y210 from ERK1) by high-throughput mass spectrometry. In vitro kinase assays revealed the functional importance of T207 and Y210, but not T198, in negatively regulating ERK1 catalytic activity. The Y210 site could be important for proper conformational arrangement of the active site, and a Y210F mutant could not be recognized by MEK1 for phosphorylation of T202 and Y204 in vitro. Autophosphorylation of T207 reduces the catalytic activity and stability of activated ERK1. We propose that after the activation of ERK1 by MEK1, subsequent slower phosphorylation of the flanking sites results in inhibition of the kinase. Because the T207 and Y210 phosphosites of ERK1 are highly conserved within the eukaryotic protein kinase family, hyperphosphorylation within the kinase activation T-loop may serve as a general mechanism for protein kinase down-regulation after initial activation by their upstream kinases. © 2016 Lai and Pelech.

Winkler D.F.,Kinexus Bioinformatics Corporation
Methods in molecular biology (Clifton, N.J.) | Year: 2011

Peptide arrays are a widely used tool in proteomic research for investigations of drug development and molecular interactions including protein-protein or protein-peptide interactions. Most peptide synthesis techniques are able to simultaneously synthesize only up to a few hundred single peptides. Using the SPOT™ technique, it is possible to synthesize and screen in parallel up to 8,000 peptides or peptide mixtures. In addition, such peptides can be released from the membrane and transferred onto peptide microarrays. Here we present protocols for the peptides synthesis on cellulose including the preparation of different cellulose membranes and easy-to-use detection methods on these peptide macroarrays. In addition, a protocol to produce and screen peptide microarray using the SPOT technology is provided.

Winkler D.F.H.,Kinexus Bioinformatics Corporation
Mini-Reviews in Organic Chemistry | Year: 2011

The SPOT technique is one of the most frequently used methods for synthesis and screening of peptides on arrays. Materials such as polypropylene and glass are used for the preparation of peptide arrays, however the most commonly used material for SPOT membranes is cellulose. This paper focuses on materials and procedures used in the SPOT synthesis on cellulose membranes as a special type of solid phase peptide synthesis. In particular, different strategies for the modification of cellulose are described which make it more suitable for solid-phase peptide synthesis. This review also provides a short overview of the synthesis procedures including some important types of peptide modification. © 2011 Bentham Science Publishers Ltd.

Winkler D.F.H.,Kinexus Bioinformatics Corporation | Tian K.,Kinexus Bioinformatics Corporation
Amino Acids | Year: 2015

Difficult peptides are a constant challenge in solid-phase peptide synthesis. In particular, hydroxyl amino acids such as serine can cause severe breakdowns in coupling yields even several amino acids after the insertion of the critical amino acid. This paper investigates several methods of improving synthesis yields of difficult peptides including the use of different resins, activators and the incorporation of a structure-breaking pseudoproline dipeptide building block both alone and in combination with each other. © 2015 Springer-Verlag Wien.

Loading Kinexus Bioinformatics Corporation collaborators
Loading Kinexus Bioinformatics Corporation collaborators