Kiel Pain and Headache Center

Kiel, Germany

Kiel Pain and Headache Center

Kiel, Germany
Time filter
Source Type

Freilinger T.,Ludwig Maximilians University of Munich | Anttila V.,Wellcome Trust Sanger Institute | Anttila V.,University of Helsinki | De Vries B.,Leiden University | And 51 more authors.
Nature Genetics | Year: 2012

Migraine without aura is the most common form of migraine, characterized by recurrent disabling headache and associated autonomic symptoms. To identify common genetic variants associated with this migraine type, we analyzed genome-wide association data of 2,326 clinic-based German and Dutch individuals with migraine without aura and 4,580 population-matched controls. We selected SNPs from 12 loci with 2 or more SNPs associated with P values of <1 × 10-5 for replication testing in 2,508 individuals with migraine without aura and 2,652 controls. SNPs at two of these loci showed convincing replication: at 1q22 (in MEF2D; replication P = 4.9 × 10-4; combined P = 7.06 × 10-11) and at 3p24 (near TGFBR2; replication P = 1.0 × 10-4; combined P = 1.17 × 10-9). In addition, SNPs at the PHACTR1 and ASTN2 loci showed suggestive evidence of replication (P = 0.01; combined P = 3.20 × 10-8 and P = 0.02; combined P = 3.86 × 10-8, respectively). We also replicated associations at two previously reported migraine loci in or near TRPM8 and LRP1. This study identifies the first susceptibility loci for migraine without aura, thereby expanding our knowledge of this debilitating neurological disorder. © 2012 Nature America, Inc. All rights reserved.

Anttila V.,Wellcome Trust Sanger Institute | Anttila V.,University of Helsinki | Anttila V.,Harvard University | Anttila V.,The Broad Institute of MIT and Harvard | And 128 more authors.
Nature Genetics | Year: 2013

Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P < 5 × 10-8). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B. © 2013 Nature America, Inc. All rights reserved.

Anttila V.,Wellcome Trust Sanger Institute | Anttila V.,University of Helsinki | Stefansson H.,DeCODE Genetics Inc. | Kallela M.,University of Helsinki | And 83 more authors.
Nature Genetics | Year: 2010

Migraine is a common episodic neurological disorder, typically presenting with recurrent attacks of severe headache and autonomic dysfunction. Apart from rare monogenic subtypes, no genetic or molecular markers for migraine have been convincingly established. We identified the minor allele of rs1835740 on chromosome 8q22.1 to be associated with migraine (P = 5.38 × 10 -9, odds ratio = 1.23, 95% CI 1.150-1.324) in a genome-wide association study of 2,731 migraine cases ascertained from three European headache clinics and 10,747 population-matched controls. The association was replicated in 3,202 cases and 40,062 controls for an overall meta-analysis P value of 1.69 × 10-11 (odds ratio = 1.18, 95% CI 1.127-1.244). rs1835740 is located between MTDH (astrocyte elevated gene 1, also known as AEG-1) and PGCP (encoding plasma glutamate carboxypeptidase). In an expression quantitative trait study in lymphoblastoid cell lines, transcript levels of the MTDH were found to have a significant correlation to rs1835740 (P = 3.96 × 10-5, permuted threshold for genome-wide significance 7.7 × 10-5). To our knowledge, our data establish rs1835740 as the first genetic risk factor for migraine. © 2010 Nature America, Inc. All rights reserved.

PubMed | Karolinska Institutet, Finnish National Institute for Health and Welfare, University of Turku, St George's, University of London and 34 more.
Type: Journal Article | Journal: Nature genetics | Year: 2016

Migraine is a debilitating neurological disorder affecting around one in seven people worldwide, but its molecular mechanisms remain poorly understood. There is some debate about whether migraine is a disease of vascular dysfunction or a result of neuronal dysfunction with secondary vascular changes. Genome-wide association (GWA) studies have thus far identified 13 independent loci associated with migraine. To identify new susceptibility loci, we carried out a genetic study of migraine on 59,674 affected subjects and 316,078 controls from 22 GWA studies. We identified 44 independent single-nucleotide polymorphisms (SNPs) significantly associated with migraine risk (P < 5 10(-8)) that mapped to 38 distinct genomic loci, including 28 loci not previously reported and a locus that to our knowledge is the first to be identified on chromosome X. In subsequent computational analyses, the identified loci showed enrichment for genes expressed in vascular and smooth muscle tissues, consistent with a predominant theory of migraine that highlights vascular etiologies.

De Vries B.,Leiden University | Anttila V.,Massachusetts General Hospital | Anttila V.,The Broad Institute of MIT and Harvard | Anttila V.,Harvard University | And 19 more authors.
Cephalalgia | Year: 2016

Background Before the genome-wide association (GWA) era, many hypothesis-driven candidate gene association studies were performed that tested whether DNA variants in genes that had been selected based on prior knowledge about migraine pathophysiology were associated with migraine. Most studies involved small sample sets without robust replication, thereby making the risk of false-positive findings high. Genome-wide marker data of thousands of migraine patients and controls from the International Headache Genetics Consortium provide a unique opportunity to re-evaluate key findings from candidate gene association studies (and other non-GWA genetic studies) in a much larger data set. Methods We selected 21 genes from published candidate gene association studies and six additional genes from other non-GWA genetic studies in migraine. Single nucleotide polymorphisms (SNPs) in these genes, as well as in the regions 500 kb up- and downstream, were inspected in IHGC GWAS data from 5175 clinic-based migraine patients with and without aura and 13,972 controls. Results None of the SNPs in or near the 27 genes, including the SNPs that were previously found to be associated with migraine, reached the Bonferroni-corrected significance threshold; neither when analyzing all migraine patients together, nor when analyzing the migraine with and without aura patients or males and females separately. Conclusion The available migraine GWAS data provide no clear evidence for involvement of the previously reported most promising candidate genes in migraine. © 2016 International Headache Society.

Loading Kiel Pain and Headache Center collaborators
Loading Kiel Pain and Headache Center collaborators