Ki Skryabin All Russian Institute Of Helminthology

Moscow, Russia

Ki Skryabin All Russian Institute Of Helminthology

Moscow, Russia
Time filter
Source Type

Eisenhauer N.,University of Gottingen | Ackermann M.,Humboldt University of Berlin | Gass S.,TU Darmstadt | Klier M.,TU Darmstadt | And 6 more authors.
Acta Oecologica | Year: 2010

A major issue in current ecological research is the effect of biodiversity on ecosystem functioning. Although several studies reported a positive diversity - productivity relationship, the role of soil animals has been largely neglected. Nematodes are among the most widespread and important herbivores causing substantial yield losses in agriculture; however, impacts of nematodes on the diversity - productivity relationship in semi-natural plant communities have not been investigated until today.In the framework of the Jena Experiment (Thuringia, Germany) we established control and nematicide treated subplots to manipulate nematode densities on plots varying in plant species (1-16) and functional group richness (1-4). We explored the interacting effects of nematicide application and plant diversity on the main trophic groups of nematodes and on aboveground plant productivity.Nematicide application reduced the number of nematodes significantly, particularly that of plant feeders and predators. The negative impact of nematicide application on plant and bacterial feeders depended however on the diversity of the plant community. Total plant shoot biomass tended to decrease in the presence of ambient nematode densities. In detail, nematode effects varied however with plant functional group identity by reducing only the shoot biomass of herbs significantly but not that of legumes. Furthermore, the shoot biomass of grasses tended to decrease in the presence of ambient nematode densities. In contrast to total shoot biomass, nematodes decreased grass shoot biomass only in high diverse but not in low diverse plant communities. Thus, the present study for the first time highlights that nematodes likely modify the community structure und functions of semi-natural plant communities by altering the competition between plant functional groups and by attenuating the diversity - productivity relationship. © 2010 Elsevier Masson SAS.

Allan E.,Friedrich - Schiller University of Jena | Allan E.,University of Bern | Weisser W.W.,Friedrich - Schiller University of Jena | Weisser W.W.,TU Munich | And 56 more authors.
Oecologia | Year: 2013

In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45 % of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combination. © 2013 Springer-Verlag Berlin Heidelberg.

Scherber C.,University of Gottingen | Mwangi P.N.,University of Zürich | Mwangi P.N.,Max Planck Institute for Biogeochemistry | Mwangi P.N.,Friedrich - Schiller University of Jena | And 12 more authors.
Journal of Plant Ecology | Year: 2010

AimsSpecies-rich plant communities are hypothesized to be more resistant against plant invasions because they use resources in a more efficient way. However, the relative contributions of aboveground competition and belowground interactions for invasion resistance are still poorly understood.MethodsWe compared the performance of Knautia arvensis transplants growing in plots differing in plant diversity both under full competition and with shoots of neighbors tied back to determine the relative strength of aboveground competition in suppressing this test invader without the confounding effect of shading. In addition, we assessed the effects of belowground competition and soil-borne pathogens on transplant performance.Important FindingsBoth aboveground competition and plant species richness strongly and independently affected invader performance. Aboveground biomass, height, leaf mass per area and flowering of transplanted individuals of K. arvensis decreased with increasing species richness of the host community. Species-rich and species-poor communities both imposed equally strong aboveground competition on K. arvensis. However, belowground interactions (especially belowground root competition) had strong negative effects on transplant performance. In addition, the presence of grasses in a plant community further reduced the performance of K. arvensis. Our results suggest that belowground competition can render species-rich host communities more suppressive to newly arriving species, thus enhancing community invasion resistance. © 2010 The Author.

Eisenhauer N.,University of Minnesota | Migunova V.D.,Ki Skryabin All Russian Institute Of Helminthology | Ackermann M.,Humboldt University of Berlin | Ruess L.,Humboldt University of Berlin | Scheu S.,University of Gottingen
PLoS ONE | Year: 2011

Background: Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices. Methodology/Principal Findings: We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment). In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years. Conclusions/Significance: The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant - nematode interactions. © 2011 Eisenhauer et al.

Loading Ki Skryabin All Russian Institute Of Helminthology collaborators
Loading Ki Skryabin All Russian Institute Of Helminthology collaborators