Key Laboratory of Tropical and Subtropical Fruit Tree Researches

Guangzhou, China

Key Laboratory of Tropical and Subtropical Fruit Tree Researches

Guangzhou, China
SEARCH FILTERS
Time filter
Source Type

Cheng C.,Guangdong Academy of Agricultural Sciences | Cheng C.,Southwest University | Cheng C.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization Ministry of Agriculture Guangzhou | Cheng C.,Key Laboratory of Tropical and Subtropical Fruit tree Researches | And 5 more authors.
Molecular Genetics and Genomics | Year: 2015

On-tree storage and harvesting of mature fruit account for a large proportion of cost in the production of citrus, and a reduction of the cost would not be achieved without a thorough understanding of the mechanism of the mature fruit abscission. Genome-wide gene expression changes in ethylene-treated fruit calyx abscission zone (AZ-C) of Citrus sinensis cv. Olinda were therefore investigated using a citrus genome array representing up to 33,879 citrus transcripts. In total, 1313 and 1044 differentially regulated genes were identified in AZ-C treated with ethylene for 4 and 24 h, respectively. The results showed that mature citrus fruit abscission commenced with the activation of ethylene signal transduction pathway that led to the activation of ethylene responsive transcription factors and the subsequent transcriptional regulation of a large set of ethylene responsive genes. Significantly down-regulated genes included those of starch/sugar biosynthesis, transportation of water and growth promoting hormone synthesis and signaling, whereas significantly up-regulated genes were those involved in defense, cell wall degradation, and secondary metabolism. Our data unraveled the underlying mechanisms of some known important biochemical events occurring at AZ-C and should provide informative suggestions for future manipulation of the events to achieve a controllable abscission for mature citrus fruit. © 2015, Springer-Verlag Berlin Heidelberg.


Zhong Y.,Guangdong Academy of Agricultural Sciences | Zhong Y.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization | Zhong Y.,Key Laboratory of Tropical and Subtropical Fruit Tree Researches | Cheng C.-Z.,Guangdong Academy of Agricultural Sciences | And 28 more authors.
PLoS ONE | Year: 2015

Root samples of 'Sanhu' red tangerine trees infected with and without Candidatus Liberibacter asiaticus (CLas) were collected at 50 days post inoculation and subjected to RNA-sequencing and isobaric tags for relative and absolute quantification (iTRAQ) to profile the differentially expressed genes (DEGs) and proteins (DEPs), respectively. Quantitative real-time PCR was subsequently used to confirm the expression of 16 selected DEGs. Results showed that a total of 3956 genes and 78 proteins were differentially regulated by HLB-infection. Among the most highly up-regulated DEPs were sperm specific protein 411, copper ion binding protein, germin-like proteins, subtilisin-like proteins and serine carboxypeptidase-like 40 proteins whose transcript levels were concomitantly up-regulated as shown by RNA-seq data. Comparison between our results and those of the previously reported showed that known HLB-modulated biological pathways including cell-wall modification, protease-involved protein degradation, carbohydrate metabolism, hormone synthesis and signaling, transcription activities, and stress responses were similarly regulated by HLB infection but different or root-specific changes did exist. The root unique changes included the down-regulation in genes of ubiquitin-dependent protein degradation pathway, secondary metabolism, cytochrome P450s, UDP-glucosyl transferases and pentatricopeptide repeat containing proteins. Notably, nutrient absorption was impaired by HLB-infection as the expression of the genes involved in Fe, Zn, N and P adsorption and transportation were significantly changed. HLB-infection induced some cellular defense responses but simultaneously reduced the biosynthesis of the three major classes of secondary metabolites, many of which are known to have anti-pathogen activities. Genes involved in callose deposition were up-regulated whereas those involved in callose degradation were also upregulated, indicating that the sieve tube elements in roots were hanging on the balance of life and death at this stage. In addition, signs of carbohydrate starvation were already eminent in roots at this stage. Other interesting genes and pathways that were changed by HLB-infection were also discussed based on our findings. © 2015 Zhong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


PubMed | Guangdong Academy of Agricultural Sciences and Key Laboratory of Tropical and Subtropical Fruit Tree Researches
Type: Comparative Study | Journal: PloS one | Year: 2015

Root samples of Sanhu red tangerine trees infected with and without Candidatus Liberibacter asiaticus (CLas) were collected at 50 days post inoculation and subjected to RNA-sequencing and isobaric tags for relative and absolute quantification (iTRAQ) to profile the differentially expressed genes (DEGs) and proteins (DEPs), respectively. Quantitative real-time PCR was subsequently used to confirm the expression of 16 selected DEGs. Results showed that a total of 3956 genes and 78 proteins were differentially regulated by HLB-infection. Among the most highly up-regulated DEPs were sperm specific protein 411, copper ion binding protein, germin-like proteins, subtilisin-like proteins and serine carboxypeptidase-like 40 proteins whose transcript levels were concomitantly up-regulated as shown by RNA-seq data. Comparison between our results and those of the previously reported showed that known HLB-modulated biological pathways including cell-wall modification, protease-involved protein degradation, carbohydrate metabolism, hormone synthesis and signaling, transcription activities, and stress responses were similarly regulated by HLB infection but different or root-specific changes did exist. The root unique changes included the down-regulation in genes of ubiquitin-dependent protein degradation pathway, secondary metabolism, cytochrome P450s, UDP-glucosyl transferases and pentatricopeptide repeat containing proteins. Notably, nutrient absorption was impaired by HLB-infection as the expression of the genes involved in Fe, Zn, N and P adsorption and transportation were significantly changed. HLB-infection induced some cellular defense responses but simultaneously reduced the biosynthesis of the three major classes of secondary metabolites, many of which are known to have anti-pathogen activities. Genes involved in callose deposition were up-regulated whereas those involved in callose degradation were also up-regulated, indicating that the sieve tube elements in roots were hanging on the balance of life and death at this stage. In addition, signs of carbohydrate starvation were already eminent in roots at this stage. Other interesting genes and pathways that were changed by HLB-infection were also discussed based on our findings.

Loading Key Laboratory of Tropical and Subtropical Fruit Tree Researches collaborators
Loading Key Laboratory of Tropical and Subtropical Fruit Tree Researches collaborators