Entity

Time filter

Source Type


Yu P.,Tianjin Medical University | Yu P.,Tianjin Neurological Institute | Yu P.,Key Laboratory of Post Neurotrauma Neuro repair and Regeneration in Central Nervous System | Zhang Z.,Tianjin Medical University | And 21 more authors.
Cell Proliferation | Year: 2016

Objectives: Progesterone treatment can effectively increase levels of circulating endothelial progenitor cells (EPCs) and improve neurological functional outcome in a traumatic brain injury (TBI) rat model. However, the mechanisms of progesterone's effects on EPC viability remain elusive. The CXCL12/CXCR4 (CXC chemokine ligand 12/CXC chemokine receptor 4) signalling pathway regulates cell proliferation; we hypothesize that it mediates progesterone-induced EPC viability. Materials and methods: EPCs were isolated from bone marrow-derived mononuclear cells (BM-MNCs) and treated with progesterone (5, 10 and 100 nm). MTS assay was used to investigate EPC viability. Protein expression was examined by Western blotting, ELISA assay and flow cytometry. Cell membrane and cytoplasm proteins were extracted with membrane and cytoplasm protein extraction kits. CXCR4 antagonist (AMD3100) and phosphatidylinositol 3-kinases (PI3K) antagonist (LY294002) were used to characterize underlying mechanisms. Results: Progesterone-induced EPC viability was time- and dose-dependent. Administration of progesterone facilitated EPC viability and increased expression of CXCL12 and phosphorylated Akt (also known as protein kinase B, pAkt) activity (P < 0.05). Progesterone did not regulate CXCR4 protein expression in cultured EPC membranes or cytoplasm. However, progesterone-induced EPC viability was significantly attenuated by AMD3100 or LY294002. Inhibition of the signalling pathway with AMD3100 and LY294002 subsequently reduced progesterone-induced CXCL12/CXCR4/PI3K/pAkt signalling activity. Conclusions: The CXCL12/CXCR4/PI3K/pAkt signalling pathway increased progesterone-induced EPC viability. © 2016 John Wiley & Sons Ltd. Source


Gao W.,Tianjin Medical University | Gao W.,Tianjin Neurological Institute | Gao W.,Key Laboratory of Post Neurotrauma Neuro repair and Regeneration in Central Nervous System | Zhao Z.,Tianjin Medical University | And 18 more authors.
Brain Research | Year: 2015

Acute traumatic brain injury (TBI) tends to cause the over-activation of inflammatory response and disruption of blood brain barrier (BBB), associating with long-term cognitive and behavioral dysfunction. Vascular endothelial growth inhibitor (VEGI), as a suppressor in the angiogenesis specifically by inducing apoptosis in proliferating endothelial cells, has been applied to different diseases, especially the tumors. But rare study had been done in the field of brain injury. So in this study, we investigated the effects and mechanisms associated with VEGI-induced neuroprotection following CNS injury in mice TBI models. We demonstrated that the VEGI treatment reduced the contusion brain tissue loss, the permeation of inflammatory cells (MPO+) and the activation of microglia (Iba-1+). The treatment up-regulated the tight junction proteins (CLN5, ZO-1 and OCLN), which are vital importance for the integrity of the blood brain barrier (BBB), the B-cell lymphoma 2 (Bcl-2) cell survival factors, while down-regulated the expression of TLR4, NF-κB and inflammatory cytokines (IL-1β, TNF-α, iNOS). The treatment also decreased the expression of reactive astrocytes (GFAP+), as well as the VEGF, and lowered the permeability of Evens Blue (EB). These findings suggested that the VEGI-treatment could alleviate the post-traumatic excessive inflammatory response, and maintain the stability of blood vessels, remitting the secondary brain damage. © 2015 Published by Elsevier B.V. Source

Discover hidden collaborations