Key Laboratory of Pollution Process and Environmental Criteria

Tianjin, China

Key Laboratory of Pollution Process and Environmental Criteria

Tianjin, China

Time filter

Source Type

Zhang C.,Key Laboratory of Pollution Process and Environmental Criteria | Zhang C.,Nankai University | Zhou L.,Key Laboratory of Pollution Process and Environmental Criteria | Zhou L.,Nankai University | And 7 more authors.
Environmental Science and Pollution Research | Year: 2014

In the present work, nanoscale zero-valent iron/activated carbon (NZVI/AC) was investigated as heterogeneous Fenton catalyst in three-dimensional (3D) electrode system for methyl orange (MO) degradation. Some important operating parameters such as cathodic potential, pH, and O2 flow rate were investigated, exhibiting good decolorization. The mineralization of MO was significantly improved by 20-35 % compared to two-dimensional (2D) AC system at the optimum conditions. Although the TOC removal of AC was higher than NZVI/AC due to its good adsorption capacity initially, heterogeneous Fenton catalysis played a more and more important roles in the following test. After eight runs, NZVI/AC still exhibited excellent catalytic properties with low iron leaching. Further, a relatively comprehensive mechanism of NZVI/AC as particle electrodes in 3D system was proposed. © 2014 Springer-Verlag Berlin Heidelberg.


Liang L.,Key Laboratory of Pollution Process and Environmental Criteria | Liang L.,Nankai University | Yu F.,Key Laboratory of Pollution Process and Environmental Criteria | Yu F.,Nankai University | And 6 more authors.
Environmental Science and Pollution Research | Year: 2016

A composite graphite felt (GF) modified with transition metal was fabricated and used as cathode in heterogeneous electro-Fenton (EF) for methyl orange (MO) degradation. Characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), the morphology and surface physicochemical properties of the cathodes after modification were observed considerably changed. After loading metals, the current response became higher, the accumulation of H2O2 and the degradation efficiency of MO were improved. Under the same conditions, GF-Co had the highest catalytic activity for electro-reduction of O2 to H2O2 and MO degradation. At pH 3, 99 % of MO degradation efficiency was obtained using GF-Co after 120 min treatment and even at initial pH 9, 82 % of that was obtained. TOC removal efficiency reached 93.8 % using GF-Co at pH 3 after 120 min treatment while that was 12.3 % using GF. After ten-time runs, the mineralization ratio of the GF-Co was still 89.5 %, suggesting that GF-Co was very promising for wastewater treatment. The addition of isopropanol proved that ·OH played an important role in degradation of MO. © 2016 Springer-Verlag Berlin Heidelberg


Yang J.,Key Laboratory of Pollution Process and Environmental Criteria | Yang J.,Nankai University | Zhou M.,Key Laboratory of Pollution Process and Environmental Criteria | Zhou M.,Nankai University | And 4 more authors.
Bioprocess and Biosystems Engineering | Year: 2016

This work studied a cost-effective electrosorption that driven by microbial fuel cells (MFC-sorption) to remove Cu2+ from wastewater without an external energy supply. The impact factors, adsorption isotherms and kinetics of the novel process were investigated. It indicated that a low electrolyte concentration and a high solution pH could enhance the Cu2+ removal efficiency, while the adsorption capacity increased with the increase of numbers of MFCs in series and the initial Cu2+ concentration. The adsorption isotherms study indicated that the monolayer adsorption in MFC-sorption was dominant. The kinetics study suggested the increase of initial Cu2+ concentration could enhance the initial adsorption rate. The electrode characterizations verified the existence of Cu2O and Cu on the electrode surface of active carbon fibers (ACFs), suggesting that MFC-sorption was not only an adsorption process, but also a redox reaction process. © 2016 Springer-Verlag Berlin Heidelberg


PubMed | Key Laboratory of Pollution Process and Environmental Criteria
Type: Journal Article | Journal: Bioprocess and biosystems engineering | Year: 2016

This work studied a cost-effective electrosorption that driven by microbial fuel cells (MFC-sorption) to remove Cu(2+) from wastewater without an external energy supply. The impact factors, adsorption isotherms and kinetics of the novel process were investigated. It indicated that a low electrolyte concentration and a high solution pH could enhance the Cu(2+) removal efficiency, while the adsorption capacity increased with the increase of numbers of MFCs in series and the initial Cu(2+) concentration. The adsorption isotherms study indicated that the monolayer adsorption in MFC-sorption was dominant. The kinetics study suggested the increase of initial Cu(2+) concentration could enhance the initial adsorption rate. The electrode characterizations verified the existence of Cu2O and Cu on the electrode surface of active carbon fibers (ACFs), suggesting that MFC-sorption was not only an adsorption process, but also a redox reaction process.

Loading Key Laboratory of Pollution Process and Environmental Criteria collaborators
Loading Key Laboratory of Pollution Process and Environmental Criteria collaborators