Time filter

Source Type

Sun Y.,Key Laboratory of Original Environmental Quality Safety | Sun Y.,Agro Environmental Protection Institute | Sun G.,Tianjin Agricultural University | Xu Y.,Key Laboratory of Original Environmental Quality Safety | And 7 more authors.
Journal of Environmental Sciences (China) | Year: 2012

The effects of immobilization remediation of Cd-contaminated soils using sepiolite on soil pH, enzyme activities and microbial communities, TCLP-Cd (toxicity characteristic leaching procedure-Cd) concentration, and spinach (Spinacia oleracea) growth and Cd uptake and accumulation were investigated. Results showed that the addition of sepiolite could increase soil pH, while the TCLP-Cd concentration in soil was decreased with increasing sepiolite. The changes of soil enzyme activities and bacteria number indicated that a certain metabolic recovery occurred after the sepiolite treatments, and spinach shoot biomass increased by 58.5%-65.5% in comparison with the control group when the concentration of sepiolite was s 10 g/kg. However, the Cd concentrations in the shoots and roots of spinach decreased with an increase in the rate of sepiolite, experiencing 38.4%-59.1% and 12.6%-43.6% reduction, respectively, in contrast to the control. The results indicated that sepiolite has the potential for success on a field scale in reducing Cd entry into the food chain. © 2012 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences.

Wang L.,Agro Environmental Protection Institute | Wang L.,Key Laboratory of Original Environmental Quality Safety | Wang L.,Tianjin Key Laboratory of Agro Environment and Agro Product Safety | Xu Y.,Agro Environmental Protection Institute | And 11 more authors.
Frontiers of Environmental Science and Engineering | Year: 2014

The selection and use of low-Cd-accumulating cultivar (LCAC) has been proposed as one of the promising approaches in minimizing the entry of Cd in the human food chain. This study suggests a screening criterion of LCACs focusing on food safety. Pot culture and plot experiments were conducted to screen out LCACs from 35 pakchoi cultivars and to identify the crucial soil factors that affect Cd accumulation in LCACs. Results of the pot culture experiment showed that shoot Cd concentrations under the three Cd treatments significantly varied across cultivars. Two cultivars, Hualv 2 and Huajun 2, were identified as LCACs because their shoot Cd concentrations were lower than 0.2 mg·kg−1 under low Cd treatment and high Cd exposure did not affect the biomass of their shoots. The plot experiment further confirmed the consistency and genotypic stability of the low-Cd-accumulating traits of the two LCACs under various soil conditions. Results also showed that soil phosphorus availability was the most important soil factor in the Cd accumulation of pakchoi, which related negatively not only to Cd uptake by root but also to Cd translocation from root to shoot. The total Cd accumulation and translocation rates were lower in the LCACs than in the high-Cd cultivar, suggesting that Cd accumulation in different cultivars is associated with the Cd uptake by root as well as translocation from root to shoot. This study proves the feasibility of the application of the LCAC strategy in pakchoi cultivation to cope with Cd contamination in agricultural soils. © 2014, Higher Education Press and Springer-Verlag Berlin Heidelberg.

Discover hidden collaborations