Time filter

Source Type

Wen Z.,Huazhong University of Science and Technology | Wen Z.,Key Laboratory of Neurological Diseases | Shu Y.,Huazhong University of Science and Technology | Shu Y.,Key Laboratory of Neurological Diseases | And 13 more authors.
Neurobiology of Aging | Year: 2014

Raf kinase inhibitor protein (RKIP) is a major negative mediator of the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway. The downregulation of RKIP is correlated with many cancers, but the mechanisms that underlie this downregulation and its roles in the nervous system remain unclear. Here, we demonstrate that RKIP is a substrate of cyclin-dependent kinase 5 (CDK5) in neurons and that the phosphorylation of RKIP at T42 causes the release of Raf-1. Moreover, T42 phosphorylation promotes the exposure and recognition of the target motif "KLYEQ" in the C-terminus of RKIP by chaperone Hsc70 and the subsequent degradation of RKIP via chaperone-mediated autophagy (CMA). Furthermore, in the brain sample of Parkinson's disease (PD) patients and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride-induced and transgenic PD models, we demonstrate that CDK5-mediated phosphorylation and autophagy of RKIP are involved in the overactivation of the ERK/MAPK cascade, leading to S-phase reentry and neuronal loss. These findings provide evidence for the role of the CDK5/RKIP/ERK pathway in PD pathogenesis and suggest that this pathway may be a suitable therapeutic target in PD. © 2014 Elsevier Inc.


Xu S.-B.,Key Laboratory of Neurological Diseases | Huang B.,Key Laboratory of Neurological Diseases | Zhang C.-Y.,Key Laboratory of Neurological Diseases | Du P.,Fudan University | And 7 more authors.
CMAJ | Year: 2013

Background: The traditional Chinese theory of acupuncture emphasizes that the intensity of acupuncture must reach a threshold to generate de qi, which is necessary to achieve the best therapeutic effect. De qi is an internal compound sensation of soreness, tingling, fullness, aching, cool, warmth and heaviness, and a radiating sensation at and around the acupoints. However, the notion that de qi must be achieved for maximum benefit has not been confirmed by modern scientific evidence. Methods: We performed a prospective multicentre randomized controlled trial involving patients with Bell palsy. Patients were randomly assigned to the de qi (n = 167) or control (n = 171) group. Both groups received acupuncture: in the de qi group, the needles were manipulated manually until de qi was reached, whereas in the control group, the needles were inserted without any manipulation. All patients received prednisone as a basic treatment. The primary outcome was facial nerve function at month 6. We also assessed disability and quality of life 6 months after randomization. Results: After 6 months, patients in the de qi group had better facial function (adjusted odds ratio [OR] 4.16, 95% confidence interval [CI] 2.23-7.78), better disability assessment (differences of least squares means 9.80, 95% CI 6.29-13.30) and better quality of life (differences of least squares means 29.86, 95% CI 22.33-37.38). Logistic regression analysis showed a positive effect of the de qi score on facial-nerve function (adjusted OR 1.07, 95% CI 1.04-1.09). Interpretation: Among patients with Bell palsy, acupuncture with strong stimulation that elicited de qi had a greater therapeutic effect, and stronger intensity of de qi was associated with the better therapeutic effects. Trial registration: Clinicaltrials.gov no. NCT00685789. © 2013 Canadian Medical Association or its licensors.


Liu R.-L.,Huazhong University of Science and Technology | Liu R.-L.,Xinxiang Medical University | Xiong Q.-J.,Huazhong University of Science and Technology | Shu Q.,Huazhong University of Science and Technology | And 10 more authors.
Brain Research | Year: 2012

Hyperoside is a flavonoid compound and widely used in clinic to relieve pain and improve cardiovascular functions. However, the effects of hyperoside on ischemic neurons and the molecular mechanisms remain unclear. Here, we used an in vitro ischemic model of oxygen-glucose deprivation followed by reperfusion (OGD-R) to investigate the protective effects of hyperoside on ischemic neuron injury and further explore the possible related mechanisms. Our results demonstrated that hyperoside protected cultured cortical neurons from OGD-R injury, it also relieved glutamate-induced neuronal injury and NMDA-induced [Ca2]i elevation. As for the mechanisms, hyperoside firstly attenuated the phosphorylation of CaMKII caused by OGD-R lesions. Meanwhile, hyperoside lessened iNOS expression induced by OGD-R via inhibition of NF-κB activation. Furthermore, ameliorating of ERK, JNK and Bcl-2 family-related apoptotic signaling pathways were also involved in the neuroprotection of hyperoside. Taken together, these studies revealed that hyperoside had protective effects on neuronal ischemia-reperfusion impairment, which was related to the regulation of nitric oxide signaling pathway. © 2012 Elsevier B.V.


Sun X.-Y.,Huazhong University of Science and Technology | Wei Y.-P.,Huazhong University of Science and Technology | Xiong Y.,Huazhong University of Science and Technology | Wang X.-C.,Huazhong University of Science and Technology | And 11 more authors.
Journal of Biological Chemistry | Year: 2012

Hyperphosphorylated tau is the major component of neurofibrillary tangles in Alzheimer disease (AD), and the tangle distribution largely overlaps with zinc-containing glutamatergic neurons, suggesting that zinc released in synaptic terminals may play a role in tau phosphorylation. To explore this possibility, we treated cultured hippocampal slices or primary neurons with glutamate or Bic/4-AP to increase the synaptic activity with or without pretreatment of zinc chelators, and then detected the phosphorylation levels of tau. We found that glutamate or Bic/4-AP treatment caused tau hyperphosphorylation at multiple AD-related sites, including Ser-396, Ser-404, Thr-231, and Thr-205, while application of intracellular or extracellular zinc chelators, or blockade of zinc release by extracellular calcium omission almost abolished the synaptic activity-associated tau hyperphosphorylation. The zinc release and translocation of excitatory synapses in the hippocampus were detected, and zinc-induced tau hyperphosphorylation was also observed in cultured brain slices incubated with exogenously supplemented zinc. Tau hyperphosphorylation induced by synaptic activity was strongly associated with inactivation of protein phosphatase 2A (PP2A), and this inactivation can be reversed by pretreatment of zinc chelator. Together, these results suggest that synaptically released zinc promotes tau hyperphosphorylation through PP2A inhibition. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc.


Zhang P.,Huazhong University of Science and Technology | Zhang P.,Key Laboratory of Neurological Diseases | Shao X.-Y.,Huazhong University of Science and Technology | Shao X.-Y.,Key Laboratory of Neurological Diseases | And 13 more authors.
Movement Disorders | Year: 2016

Background: Inflammasomes, which mediate the activation of caspase-1 and maturation of IL-1β and IL-18, have been unambiguously verified to participate in many diseases, such as lung diseases, infectious diseases and Alzheimer's disease, but the relation between Parkinson's disease and inflammasomes is poorly understood. Methods: The expression, maturation, and secretion of inflammasomes in neurons were measured. The activation of inflammasomes in the substantia nigra of the brain was tested in acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and an α-synuclein transgenic mouse model. The levels of IL-1β and IL-18 in cerebrospinal fluid and serum samples of Parkinson's disease (PD) patients and control subjects were measured. The role of cyclin-dependent kinase 5 (Cdk5) in neuronal inflammasome activation was evaluated using the pharmacological Cdk5 inhibitor roscovitine or Cdk5-targeted deletion. Results: Here, we observed the expression of core molecules of inflammasomes, including NALP3, ASC, caspase-1, and IL-1β, in neuronal cells. The PD inducer rotenone could activate neuronal inflammasomes and promote the maturation and secretion of the cleaved IL-1β and IL-18 in a dose- and time-dependent manner. We also detected the activation of inflammasomes in the substantia nigra of a PD mouse model and in cerebrospinal fluid of PD patients. Furthermore, Cdk5 is required for the activation of inflammasomes, and both inhibition and deletion of Cdk5 could efficiently block inflammasome activation in PD models. Conclusions: Together, our results indicated that Cdk5-dependent activation of neuronal inflammasomes was involved in the progression of PD. © 2016 International Parkinson and Movement Disorder Society.


Shu Y.,Huazhong University of Science and Technology | Shu Y.,Jiangsu University | Ming J.,Huazhong University of Science and Technology | Zhang P.,Huazhong University of Science and Technology | And 5 more authors.
PLoS ONE | Year: 2016

Background Recent studies have linked certain single nucleotide polymorphisms in the leucine-rich repeat kinase 2 (LRRK2) gene with Parkinson's disease (PD). Among the mutations, LRRK2 c.4883G>C (R1628P) variant was identified to have a significant aociation with the risk of PD in ethnic Han-Chinese populations. But the molecular pathological mechanisms of R1628P mutation in PD is still unknown. Principle Findings Unlike other LRRK2 mutants in the Roc-COR-Kinase domain, the R1628P mutation didn't alter the LRRK2 kinase activity and promote neuronal death directly. LRRK2 R1628P mutation increased the binding affinity of LRRK2 with Cyclin-dependent kinase 5 (Cdk5). Interestingly, R1628P mutation turned its adjacent amino acid residue S1627 on LRRK2 protein to a novel phosphorylation site of Cdk5, which could be defined as a typical type II (+) phosphorylation- related single nucleotide polymorphism. Importantly, we showed that the phosphorylation of S1627 by Cdk5 could activate the LRRK2 kinase, and neurons ectopically expreing R1628P displayed a higher sensitivity to 1-methyl-4-phenylpyridinium, a bioactive metabolite of environmental toxin MPTP, in a Cdk5-dependent manner. Conclusion Our data indicate that Parkinson-related LRRK2 mutation R1628P leads to Cdk5 phosphorylation of LRRK2 at S1627, which would upregulate the kinase activity of LRRK2 and consequently cause neuronal death. © 2016 Shuet al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Zhang P.,Huazhong University of Science and Technology | Zhang P.,Key Laboratory of Neurological Diseases | Tian B.,Huazhong University of Science and Technology | Tian B.,Key Laboratory of Neurological Diseases
Oxidative Medicine and Cellular Longevity | Year: 2014

Metabolic syndrome is becoming commoner due to a rise in obesity rates among adults. Generally speaking, a person with metabolic syndrome is twice as likely to develop cardiovascular disease and five times as likely to develop diabetes as someone without metabolic syndrome. Increasing oxidative stress in metabolic syndrome and Parkinson's disease is mentioned in the comprehensive articles; however, the system review about clear relation between metabolic syndrome and Parkinson's disease is deficient. In this review, we will focus on the analysis that the metabolic syndrome may be a risk factor for Parkinson's disease and the preventions that reduce the incident of Parkinson's disease by regulating the oxidative stress. © 2014 Pei Zhang and Bo Tian.


Yang M.-J.,Huazhong University of Science and Technology | Wang F.,Huazhong University of Science and Technology | Wang F.,Key Laboratory of Neurological Diseases | Wang F.,Key Laboratory of Natural Drug Chemistry and Evaluation | And 19 more authors.
American Journal of Physiology - Endocrinology and Metabolism | Year: 2010

The adipocyte-derived hormone leptin and the pancreatic β-cell-derived hormone insulin function as afferent signals to the hypothalamus in an endocrine feedback loop that regulates body adiposity. They act in hypothalamic centers to modulate the function of specific neuronal subtypes, such as neuropeptide Y (NPY) neurons, by modifying neuronal electrical activity. To investigate the intrinsic activity of these neurons and their responses to insulin and leptin, we used a combination of morphological features and immunocytochemical technique to identify the NPY neurons of hypothalamic arcuate nucleus (ARC) and record whole cell large-conductance Ca 2+-activated potassium (BK) currents on them. We found that both of the hormones increase the peak amplitude of BK currents, shifting the steady-state activation curve to the left. The effect of both insulin and leptin can be prevented by pretreatment with inhibitors of tyrosine kinase and phosphatidylinositol 3-kinase (PI3K) but not MAPK. These data indicate that PI3K-mediated signals are the common regulators of BK channels by insulin and leptin and mediated the two hormones' identical activatory effects on ARC NPY neurons. The effect of insulin and leptin together was similar to that of insulin or leptin alone, and leptin or insulin pretreatment did not lead to insulin- or leptin-sensitizing effects, respectively. These intracellular signaling mechanisms may play key roles in regulating ARC NPY neuron activity and physiological processes such as the control of food intake and body weight, which are under the combined control of insulin and leptin. Copyright © 2010 the American Physiological Society.


Li X.,Huazhong University of Science and Technology | Li X.,Key Laboratory of Neurological Diseases | Zhao Y.,Huazhong University of Science and Technology | Xia Q.,Huazhong University of Science and Technology | And 9 more authors.
Cell Death and Disease | Year: 2016

Previous data have suggested that the nuclear translocation of annexin 1 (ANXA1) is involved in neuronal apoptosis after ischemic stroke. As the mechanism and function of ANXA1 nuclear migration remain unclear, it is important to clarify how ANXA1 performs its role as an apoptosis 'regulator' in the nucleus. Here we report that importazole (IPZ), an importin β (Impβ)-specific inhibitor, decreased ANXA1 nuclear accumulation and reduced the rate of neuronal death induced by nuclear ANXA1 migration after oxygen-glucose deprivation-reoxygenation (OGD/R). Notably, ANXA1 interacted with the Bid (BH3-interacting-domain death agonist) promoter directly; however; this interaction could be partially blocked by the p53 inhibitor pifithrin-α (PFT-α). Accordingly, ANXA1 was shown to interact with p53 in the nucleus and this interaction was enhanced following OGD/R. A luciferase reporter assay revealed that ANXA1 was involved in the regulation of p53-mediated transcriptional activation after OGD/R. Consistent with this finding, the nuclear translocation of ANXA1 after OGD/R upregulated the expression of Bid, which was impeded by IPZ, ANXA1 shRNA, or PFT-α. Finally, cell-survival testing demonstrated that silencing ANXA1 could improve the rate of cell survival and decrease the expression of both cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase. These data suggested that Impβ-dependent nuclear ANXA1 migration participates in the OGD/R-dependent induction of neuronal apoptosis. ANXA1 interacts with p53 and promotes p53 transcriptional activity, which in turn regulates Bid expression. Silencing ANXA1 decreases the expression of Bid and suppresses caspase-3 pathway activation, thus improving cell survival after OGD/R. This study provides a novel mechanism whereby ANXA1 regulates apoptosis, suggesting the potential for a previously unidentified treatment strategy in minimizing apoptosis after OGD/R.

Loading Key Laboratory of Neurological Diseases collaborators
Loading Key Laboratory of Neurological Diseases collaborators