Time filter

Source Type

Lu Y.,Key Laboratory of Molecular Neurobiology | Jiang Q.,Key Laboratory of Molecular Neurobiology | Yu L.,Key Laboratory of Molecular Neurobiology | Lu Z.-Y.,Key Laboratory of Molecular Neurobiology | And 5 more authors.
Endocrinology | Year: 2013

Estrogen has been reported to affect pain perception, although the underlying mechanisms remain unclear. In this investigation, pain behavior testing, patch clamp recording, and immunohistochemistry were used on rats and transgenic mice to determine which estrogen receptors (ERs) and the related signaling pathway are involved in the rapid modulation of estrogen on P2X3 receptor-mediated events. The results showed that 17β-estradiol (E2) rapidly inhibited pain induced by α,β-methylene ATP (α,β-me-ATP), a P2X1 and P2X3 receptor agonist in ovariectomized rats and normal rats in diestrus. The ERα agonist 4,49,499-(4-propyl-[1H]- pyrazole-1,3,5-triyl) trisphenol (PPT) and G protein-coupled receptor 30 (GPR30) agonist G-1 mimicked the estrogen effect, whereas the ERβ agonist diarylpropionitrile (DPN) had no effect. In cultured rat dorsal root ganglion (DRG) neurons, PPT and G-1 but not DPN significantly attenuated α,β-me-ATP-mediated currents, with the dose-response curve of these currents shifted to the right. The inhibitory effect of E2 on P2X3 currents was blocked by G-15, a selective antagonist to the GPR30 estrogen receptor. E2 lacked this effect in DRG neurons from ERα-knockout mice but partly remained in those from ERβ-knockout mice. The P2X3 and GPR30 receptors were coexpressed in the rat DRG neurons. Furthermore, the ERK1/2 inhibitor U0126 reversed the inhibitory effect of E2 on α,β-me-ATP-induced pain and of PPT or G-1 on P2X3 receptor-mediated currents. The cAMP-protein kinase A (PKA) agonist forskolin, but not the PKC agonist phorbol-12-myristate-13-acetate (PMA), mimicked the estrogen-inhibitory effect on P2X3 receptor currents, which was blocked by another ERK1/2 inhibitor, PD98059. These results suggest that estrogen regulates P2X3-mediated peripheral pain by acting on ERα and GPR30 receptors expressed in primary afferent neurons, which probably involves the intracellular cAMP-PKA-ERK1/2 pathway. Copyright © 2013 by The Endocrine Society.

Wang C.-N.,Key Laboratory of Molecular Neurobiology | Duan G.-L.,Key Laboratory of Molecular Neurobiology | Duan G.-L.,Shanghai University | Liu Y.-J.,Shanghai University of Sport | And 6 more authors.
Free Radical Biology and Medicine | Year: 2015

We have recently demonstrated that lipopolysaccharide (LPS) causes mitochondrial oxidative stress and dysfunction in adrenal glands, thereby leading to adrenocortical insufficiency. Since nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) leads to mitochondrial damage in various tissues, the present study aims to investigate whether NO contributes to mitochondrial oxidative stress in adrenal cortex and adrenocortical insufficiency during endotoxemia. Systemic administration of LPS increased iNOS expression and NO production in adrenal glands of mice. The specific iNOS inhibitor 1400 W significantly attenuated the LPS-induced mitochondrial superoxide production and dysfunction in adrenal glands, and reversed the LPS-induced adrenocortical hyporesponsiveness to adrenocorticotropic hormone (ACTH). In contrast, administration of the NO donor sodium nitroprusside (SNP) led to mitochondrial oxidative stress and dysfunction in adrenal glands, which resulted in a blunted corticosterone response to ACTH. Using double immunofluorescence staining for iNOS with the vascular endothelial cell marker CD31 or the macrophage marker CD68, we found that increased iNOS expression was found in vascular endothelial cells and macrophages, but not adrenocortical cells in the adrenal gland during endotoxemia. Administration of the hydrogen sulfide (H2S) donor GYY4137 inhibited NO production and reversed LPS-induced adrenocortical hyporesponsiveness. Our data suggest that overproduction of NO, which is mainly generated by endothelial cells and macrophages during endotoxemia, contributes to mitochondrial oxidative stress in adrenocortical cells and subsequently leads to adrenal insufficiency. © 2015 Elsevier Inc. All rights reserved.

Loading Key Laboratory of Molecular Neurobiology collaborators
Loading Key Laboratory of Molecular Neurobiology collaborators