Entity

Time filter

Source Type


Zhang Y.,Northeast Agricultural University | Zhao J.,Northeast Agricultural University | Liu C.,Northeast Agricultural University | Shen Y.,Key Laboratory of Microbial Drug Engineering of Heilongjiang Provincial Education Committee | And 3 more authors.
Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology | Year: 2014

A novel actinomycete, strain NEAU-st1T, was isolated from a soil sample collected in Shaanxi province, Northwest China and characterized using a polyphasic approach. 16S rRNA gene sequence similarity studies showed that strain NEAU-st1T belongs to the genus Nonomuraea, being most closely related to Nonomuraea rosea GW12687T (98.91 %), Nonomuraea solani NEAU-Z6T (98.44 %), Nonomuraea rhizophila YIM67092T(98.24 %) and Nonomuraea monospora PT708T (98.02 %); similarities to sequences of other type strains of the genus Nonomuraea were lower than 98 %. Both tree-making algorithms used also supported the position that strain NEAU-st1T formed a distinct clade with its most closely related species. Morphological and physiological characteristics confirmed that the strain belongs to the genus Nonomuraea and distinguished it from its most closely related species. DNA-DNA hybridization further differentiated strain NEAU-st1T from its nearest phylogenetic neighbours. These results suggested that strain NEAU-st1T represents a novel species of the genus Nonomuraea, for which the name Nonomuraea shaanxiensis sp. Nov. is proposed. The type strain is NEAU-st1T (=CGMCC 4.7096T = DSM 45877T). © 2013 Springer Science+Business Media Dordrecht. Source


Zhang X.,Northeast Agricultural University | Liu C.,Northeast Agricultural University | Zhang Y.,Northeast Agricultural University | Wang H.,Key Laboratory of Microbial Drug Engineering of Heilongjiang Provincial Education Committee | And 4 more authors.
Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology | Year: 2014

A novel actinomycete, designated strain NEAU-GH7T, was isolated from a lake sediment and characterized using a polyphasic approach. Strain NEAU-GH7T was Gram-stain positive, aerobic, non-spore-forming and produced spherical sporangia. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain NEAU-GH7T formed a monophyletic clade with the closest relative Streptosporangium longisporum DSM 43180T (99.0 %), an association that was supported by a bootstrap value of 74 % in the neighbour-joining tree and also recovered with the maximum-likelihood algorithm. However, the low level of DNA-DNA relatedness allowed the strain to be differentiated from its closest relative. Moreover, strain NEAU-GH7T could also be differentiated from S. longisporum DSM 43180T and other Streptosporangium species showing high 16S rRNA gene sequence similarity (>98.0 %) by morphological and physiological characteristics. On the basis of phylogenetic analysis, DNA-DNA hybridization and phenotypic characteristics, strain NEAU-GH7T should be classified as a new species of the genus Streptosporangium, for which the name Streptosporangium shengliensis sp. Nov. is proposed. The type strain is NEAU-GH7T (=CGMCC 4.7105 T=DSM 45881T). © 2013 Springer Science+Business Media Dordrecht. Source


Gao R.,Northeast Agricultural University | Liu C.,Northeast Agricultural University | Zhao J.,Northeast Agricultural University | Jia F.,Northeast Agricultural University | And 4 more authors.
Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology | Year: 2014

Abstract: A novel actinomycete, designated strain NEAU-GRX11T, was isolated from muddy soil collected from a stream of Jinlong Mountain in Harbin, north China. The organism was found to have morphological and chemotaxonomic characteristics typical of the genus Micromonospora. The 16S rRNA gene sequence of strain NEAU-GRX11T showed highest similarity to Micromonospora zamorensis CR38T (99.2 %), Micromonospora saelicesensis Lupac 09T (99.0 %), Micromonospora chokoriensis 2-19/6T (98.7 %), Micromonospora coxensis 2-30-b/28T (98.5 %), Micromonospora aurantiaca ATCC 27029T (98.4 %) and Micromonospora lupini lupac 14NT (98.3 %). Phylogenetic analysis based on the 16S rRNA gene and gyrB gene demonstrated that strain NEAU-GRX11T was a member of the genus Micromonospora and supported the closest phylogenetic relationship to M. zamorensis CR38T, M. saelicesensis Lupac 09T, M. chokoriensis 2-19/6T and M. lupini lupac 14NT. A combination of DNA-DNA hybridization and some phenotypic characteristics indicated that the novel strain could be readily distinguished from these closest phylogenetic relatives. Therefore, it is proposed that NEAU-GRX11T represents a novel species of the genus Micromonospora, for which the name Micromonospora jinlongensis sp nov is proposed. The type strain is NEAU-GRX11T (=CGMCC 4.7103 T=DSM 45876T). © 2013 Springer Science+Business Media Dordrecht. Source


Zhang J.,Northeast Agricultural University | An J.,Key Laboratory of Microbial Drug Engineering of Heilongjiang Provincial Education Committee | Wang J.-J.,Key Laboratory of Microbial Drug Engineering of Heilongjiang Provincial Education Committee | Yan Y.-J.,Key Laboratory of Microbial Drug Engineering of Heilongjiang Provincial Education Committee | And 3 more authors.
Applied Microbiology and Biotechnology | Year: 2013

Milbemycins A3/A4 are important 16-membered macrolides which have been commercialized and widely used as pesticide and veterinary medicine. However, similar to other milbemycin producers, the production of milbemycins A3/A4 in Streptomyces bingchenggensis is usually accompanied with undesired by-products such as C5-O-methylmilbemycins B2/B3 (α-class) and β1/β2 (β-class) together with nanchangmycin. In order to obtain high yield milbemycins A3/A4-producing strains that produce milbemycins A3/A4 as main components, milD, a putative C5-O-methyltransferase gene of S. bingchenggensis, was biofunctionally investigated by heterologous expression in Escherichia coli. Enzymatic analysis indicated that MilD can catalyze both α-class (A3/A4) and β-class milbemycins (β11) into C5-O-methylmilbemycins B2/B3 and β1, respectively, suggesting little effect of furan ring formed between C6 and C8a on the C5-O-methylation catalyzed by MilD. Deletion of milD gene resulted in the elimination of C5-O-methylmilbemycins B2/B3 and β1/β2 together with an increased yield of milbemycins A3/A4 in disruption strain BCJ13. Further disruption of the gene nanLD encoding loading module of polyketide synthase responsible for the biosynthesis of nanchangmycin led to strain BCJ36 that abolished the production of nanchangmycin. Importantly, mutant strain BCJ36 (â̂†milDâ̂†nanLD) produced milbemycins A3/A4 as main secondary metabolites with a yield of 2312 ± 47 μg/ml, which was approximately 74 % higher than that of the initial strain S. bingchenggensis BC-109-6 (1326 ± 37 μg/ml). © 2013 Springer-Verlag Berlin Heidelberg. Source

Discover hidden collaborations