Key Laboratory of Longevity and Aging Related Diseases

Nanning, China

Key Laboratory of Longevity and Aging Related Diseases

Nanning, China

Time filter

Source Type

Guo H.,Key Laboratory of Longevity and Aging Related Diseases | Guo H.,Guangxi Medical University | Lu Y.,Key Laboratory of Longevity and Aging Related Diseases | Lu Y.,Guangxi Medical University | And 10 more authors.
Thoracic Cancer | Year: 2014

Despite advances in surgery, imaging, chemotherapy, and radiotherapy, the poor overall cancer-related death rate remains unacceptable. Novel therapeutic strategies are desperately needed. Nowadays, targeted therapy has become the most promising therapy and a welcome asset to the cancer therapeutic arena. There is a large body of evidence demonstrating that the Notch signaling pathway is critically involved in the pathobiology of a variety of malignancies. In this review, we provide an overview of emerging data, highlight the mechanism of the Notch signaling pathway in the development of a wide range of cancers, and summarize recent progress in therapeutic targeting of the Notch signaling pathway. © 2014 Tianjin Lung Cancer Institute and Wiley Publishing Asia Pty Ltd.


Zhu Y.,Key Laboratory of Longevity and Aging related Diseases | Zhu Y.,Guangxi Medical University | Zou C.,Key Laboratory of Longevity and Aging related Diseases | Zou C.,Guangxi Medical University | And 13 more authors.
Tumor Biology | Year: 2015

Nasopharyngeal carcinoma (NPC) is a common malignancy in southern China and Southeast Asia. NPC frequently metastasizes to the bone in advanced patients resulting in high mortality. The molecular mechanisms for NPC development and cancer-induced bone lesions are unclear. In this study, we firstly determined chemokine receptor CCR2 and CXCR6 expressions in clinical specimens and CNE2, SUNE1, CNE1, and HK1 cell lines. Then, we measured chemokine CCL2 and CXCL16 production in these NPC cell lines by ELISA. Expression levels of these chemokines and their receptors were observed to positively correlate with tumor aggressiveness. Furthermore, U0126 (MEK inhibitor) was used to treat these NPC cell lines. CCL2 and CXCL16 expression levels and cell proliferation were significantly inhibited by U0126 in a dose- and time-dependent manner. Finally, we collected conditioned medium (CM) from NPC cell cultures in the presence of U0126 treatment. When mouse bone marrow non-adherent cells were treated with the CM, the numbers of multinucleated osteoclast formation were dramatically diminished. These results indicate that MEK inhibitor diminishes NPC cell proliferation and NPC-induced osteoclastogenesis via modulating CCL2 and CXCL16 expressions. This study provides novel therapeutic targets such as CCL2/CCR2 and CXCL16/CXCR6 for advanced NPC patients. © 2015, International Society of Oncology and BioMarkers (ISOBM).


PubMed | Guangxi Medical University, Key Laboratory of Longevity and Aging related Diseases and Sun Yat Sen University
Type: Journal Article | Journal: Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine | Year: 2015

Nasopharyngeal carcinoma (NPC) is a common malignancy in southern China and Southeast Asia. NPC frequently metastasizes to the bone in advanced patients resulting in high mortality. The molecular mechanisms for NPC development and cancer-induced bone lesions are unclear. In this study, we firstly determined chemokine receptor CCR2 and CXCR6 expressions in clinical specimens and CNE2, SUNE1, CNE1, and HK1 cell lines. Then, we measured chemokine CCL2 and CXCL16 production in these NPC cell lines by ELISA. Expression levels of these chemokines and their receptors were observed to positively correlate with tumor aggressiveness. Furthermore, U0126 (MEK inhibitor) was used to treat these NPC cell lines. CCL2 and CXCL16 expression levels and cell proliferation were significantly inhibited by U0126 in a dose- and time-dependent manner. Finally, we collected conditioned medium (CM) from NPC cell cultures in the presence of U0126 treatment. When mouse bone marrow non-adherent cells were treated with the CM, the numbers of multinucleated osteoclast formation were dramatically diminished. These results indicate that MEK inhibitor diminishes NPC cell proliferation and NPC-induced osteoclastogenesis via modulating CCL2 and CXCL16 expressions. This study provides novel therapeutic targets such as CCL2/CCR2 and CXCL16/CXCR6 for advanced NPC patients.


PubMed | University of Michigan, Key Laboratory of Longevity and Aging related Diseases and Sun Yat Sen University
Type: | Journal: Oncotarget | Year: 2016

Insulin-like growth factor binding proteins (IGFBPs) play critical roles in carcinogenesis. This study assessed the impact of IGFBP6 on the progression of nasopharyngeal carcinoma (NPC). Using immunohistochemical analysis, we found that IGFBP6 was differentially expressed in primary malignant NPC tissues. Clinical samples were divided into two groups: IGFBP6(+) and IGFBP6(-). Five years of follow-up revealed that overall survival and distant metastasis-free survival rates were significantly higher in the IGFBP6(+) than IGFBP6(-) group. We also used real-time PCR, ELISA and western blot assays to measure IGFBP6 levels in five NPC cell lines (CNE1, CNE2, HONE1, HK1 and SUNE1). All the cell lines expressed IGFBP6, but at different levels, reflecting disease heterogeneity. In addition, exogenous expression of IGFBP6 inhibited CNE2 cell proliferation and invasion in vitro. IGFBP6 knockdown activated the GSK3/-catenin/cyclin D1 pathway and enhanced CNE2 tumor cell growth and metastasis in a mouse model. These results suggest that IGFBP6 may be an independent prognostic biomarker for NPC.


Li J.,Key Laboratory of Longevity and Aging Related Diseases | Li J.,Guangxi Medical University | Yang X.,Key Laboratory of Longevity and Aging Related Diseases | Yang X.,Guangxi Medical University | And 17 more authors.
International Journal of Oncology | Year: 2016

Certain microRNAs (miRNAs) play a key role in cancer cell chemoresistance. However, the pleiotropic functions of exosome-derived miRNAs on developing chemoresistance remain unknown. In the present study, we aimed to construct potential networks of miRNAs, which derived from the exosome of chemoresistant prostate cancer (PCA) cells, with their known target genes using miRNA expression profiling and bioinformatic tools. Global miRNA expression profiles were measured by microarray. Twelve miRNAs were initially selected and validated by qRT-PCR. Known targets of deregulated miRNAs were utilized using DiANA-TarBase database v6.0. The incorporation of deregulated miRNAs and target genes into KEGG pathways were utilized using DiANA-mirPath software. To construct potential miRNA regulatory networks, the overlapping parts of miRNAs and their targer genes from the selected KEGG pathway 'PCA progression (hsa05215)' were visualized by Cytoscape software. We identified 29 deregulated miRNAs, including 19 upregulated and 10 downregulated, in exosome samples derived from two kinds of paclitaxel resistance PCA cells (PC3-TXR and DU145-TXR) compared with their parental cells (PC3 and DU145). The enrichment results of deregulated miRNAs and known target genes showed that a few pathways were correlated with several critical cell signaling pathways. We found that hub hsa-miR3176, -141-3p, -5004-5p, -16-5p, -3915, -4883p, -23c, -3673 and -3654 were potential targets to hub gene androgen receptor (AR) and phosphatase and tensin homolog (PTEN). Hub gene T-cell factors/lymphoid enhancer-binding factors 4 (TCF4) target genes were mainly regulated by hub hsa-miR-32-5, -141-3p, -606, -381 and -429. These results may provide a linkage between PCA chemoresistance and exosome regulatory networks and thus lead us to propose that AR, PTEN and TCF4 genes may be the important genes which are regulated by exosome miRNAs in chemoresistance cancer cells.


Guo H.,Key Laboratory of Longevity and Aging Related Diseases | Guo H.,Guangxi Medical University | Zhou X.,Key Laboratory of Longevity and Aging Related Diseases | Zhou X.,Guangxi Medical University | And 12 more authors.
Thoracic Cancer | Year: 2015

There is an urgent need to apply basic research achievements to the clinic. In particular, mechanistic studies should be developed by bench researchers, depending upon clinical demands, in order to improve the survival and quality of life of cancer patients. To date, translational medicine has been addressed in cancer biology, particularly in the identification and characterization of novel tumor biomarkers. This review focuses on the recent achievements and clinical application prospects in tumor biomarkers based on translational medicine. © 2015 China Lung Oncology Group and Wiley Publishing Asia Pty Ltd.


Yang Y.,Key Laboratory of Longevity and Aging Related Diseases | Yang Y.,Guangxi Medical University | Lu Y.,Key Laboratory of Longevity and Aging Related Diseases | Lu Y.,Guangxi Medical University | And 9 more authors.
Oncology Reports | Year: 2016

Prostate cancer is the most commonly diagnosed tumor in men in the United States. Patients with hormone-refractory prostate cancer are often treated with paclitaxel, but most of them eventually develop drug resistance. S-phase kinase associated protein 2 (Skp2) is a component of the SCF (Skp1-Cullin1-F-box) type of E3 ubiquitin ligase complexes. In the present study, we investigated the role of Skp2 in paclitaxel-resistant DU145-TxR or PC-3-TxR cells by Skp2 silencing or using Skp2 inhibitors. We first confirmed that Skp2 expression is up regulated in DU145-TxR or PC-3-TxR cells compared with their parental cells DU145 or PC-3, respectively. Knockdown of Skp2 or Skp2 inhibitor treatment in DU145-TxR or PC-3-TxR cells restored paclitaxel sensitivity. E-cadherin was decreased while Vimentin was increased in PC-3-TxR or DU145-TxR cells. In addition, p27 expression was inversely correlated with Skp2 expression in DU145-TxR or PC-3-TxR cells. Moreover, p27 was found to increase in both Skp2 silencing PC-3-TxR and DU145-TxR cells. These results suggest that Skp2 is associated with prostate cancer cell resistance to paclitaxel. Skp2 may be a potential therapeutic target for drug-resistant prostate cancer. © 2016, Spandidos Publications. All rights reserved.


Zhao H.-L.,Tianjin Medical University | Yang F.,Tianjin Medical University | Huang X.,Key Laboratory of Longevity and Aging Related Diseases | Huang X.,Guangxi Medical University | Zhou Q.-H.,Tianjin Medical University
Thoracic Cancer | Year: 2014

Angiogenesis is an indispensible process for tumor growth and metastasis. Anti-angiogenesis based therapy is one of the most promising treatments for inhibiting cancer progression. Through the exploration of inhibitors of vascular endothelial growth factor receptor (VEGFR)-2, deemed as the major angiogenesis pathway, pazopanib was found as a small molecular pan-VEGFR and pan-platelet-derived growth factor receptor (PDGFR) inhibitor, with suitable pharmacodynamic and pharmacokinetic parameters to be an oral drug. In an vitro study, pazopanib exerted anti-tumor effect through mechanisms including the Raf-MAPK/ERK (MEK)-extracellular signal-regulated kinase (ERK) pathway, and directly targeted on v-raf murine sarcoma viral oncogene homolog B (B-raf) as well. It inhibited the proliferation of cell lines, such as DU-145 and HRC-45 in hepatocellular carcinoma, through mechanisms like "cell cycle arrest." In vivo xenograft studies and phase I/II clinical trials revealed a series of plasma cytokine and angiogenic factors, such as interleukin (IL)-6, IL-12, hepatocyte growth factor (HGF), and soluble VEGFR2, which have significant association with clinical curative effect. Pazopanib has been shown to be effective in solid tumors and some hematological malignancies. Future studies should focus on the exploration of biomarkers to screen sensitive patients and concomitant or metronomic dosage with other kinds of medicines. © 2014 Tianjin Lung Cancer Institute and Wiley Publishing Asia Pty Ltd.


PubMed | University of Michigan, Key Laboratory of Longevity and Aging Related Diseases and Kanazawa University
Type: Journal Article | Journal: Oncology reports | Year: 2016

Prostate cancer is the most commonly diagnosed tumor in men in the United States. Patients with hormone-refractory prostate cancer are often treated with paclitaxel, but most of them eventually develop drug resistance. S-phase kinase associated protein2 (Skp2) is a component of the SCF (Skp1-Cullin1-F-box) type of E3 ubiquitin ligase complexes. In the present study, we investigated the role of Skp2 in paclitaxel-resistant DU145-TxR or PC-3-TxR cells by Skp2 silencing or using Skp2 inhibitors. We first confirmed that Skp2 expression is up-regulated in DU145-TxR or PC-3-TxR cells compared with their parental cells DU145 or PC-3, respectively. Knockdown of Skp2 or Skp2 inhibitor treatment in DU145-TxR or PC-3-TxR cells restored paclitaxel sensitivity. E-cadherin was decreased while Vimentin was increased in PC-3-TxR or DU145-TxR cells. In addition, p27 expression was inversely correlated with Skp2 expression in DU145-TxR or PC-3-TxR cells. Moreover, p27 was found to increase in both Skp2 silencing PC-3-TxR and DU145-TxR cells. These results suggest that Skp2 is associated with prostate cancer cell resistance to paclitaxel. Skp2 may be a potential therapeutic target for drug-resistant prostate cancer.


PubMed | University of Michigan, Key Laboratory of Longevity and Aging Related Diseases and Kanazawa University
Type: Journal Article | Journal: International journal of oncology | Year: 2016

Certain microRNAs (miRNAs) play a key role in cancer cell chemoresistance. However, the pleiotropic functions of exosome-derived miRNAs on developing chemoresistance remain unknown. In the present study, we aimed to construct potential networks of miRNAs, which derived from the exosome of chemoresistant prostate cancer (PCa) cells, with their known target genes using miRNA expression profiling and bioinformatic tools. Global miRNA expression profiles were measured by microarray. Twelve miRNAs were initially selected and validated by qRT-PCR. Known targets of deregulated miRNAs were utilized using DIANA-TarBase database v6.0. The incorporation of deregulated miRNAs and target genes into KEGG pathways were utilized using DIANA-mirPath software. To construct potential miRNA regulatory networks, the overlapping parts of miRNAs and their targer genes from the selected KEGG pathway PCa progression (hsa05215) were visualized by Cytoscape software. We identified 29 deregulated miRNAs, including 19 upregulated and 10 downregulated, in exosome samples derived from two kinds of paclitaxel resistance PCa cells (PC3-TXR and DU145-TXR) compared with their parental cells (PC3 and DU145). The enrichment results of deregulated miRNAs and known target genes showed that a few pathways were correlated with several critical cell signaling pathways. We found that hub hsa-miR3176, -141-3p, -5004-5p, -16-5p, -3915, -4883p, -23c, -3673 and -3654 were potential targets to hub gene androgen receptor (AR) and phosphatase and tensin homolog (PTEN). Hub gene T-cell factors/lymphoid enhancer-binding factors 4 (TCF4) target genes were mainly regulated by hub hsa-miR-32-5, -141-3p, -606, -381 and -429. These results may provide a linkage between PCa chemoresistance and exosome regulatory networks and thus lead us to propose that AR, PTEN and TCF4 genes may be the important genes which are regulated by exosome miRNAs in chemoresistance cancer cells.

Loading Key Laboratory of Longevity and Aging Related Diseases collaborators
Loading Key Laboratory of Longevity and Aging Related Diseases collaborators