Time filter

Source Type

Peng X.-X.,Weifang Medical University | Zhao R.-L.,Weifang Medical University | Song W.,Weifang Medical University | Chu H.-R.,Weifang Medical University | And 5 more authors.
International Journal of Molecular Sciences | Year: 2012

When studying the altered expression of genes associated with cartilage regeneration by quantitative real-time RT-PCR (RT-qPCR), reference genes with highly stable expression during different stages of chondrocyte developmental are necessary to normalize gene expression accurately. Until now, no reports evaluating expression changes of commonly used reference genes in rabbit articular cartilage have been published. In this study, defects were made in rabbit articular cartilage, with or without insulin-like growth factor 1 (IGF-1) treatment, to create different chondrocyte living environments. The stability and intensity of the expressions of the candidate reference genes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S Ribosomal RNA (18S rRNA), cyclophilin (CYP), hypoxanthine phosphoribosyl transferase (HPRT1), and β-2-microglobulin (B2M) were evaluated. The data were analyzed by geNorm and NormFinder. B2M and 18S rRNA were identified to be suitable reference genes for rabbit cartilage tissues. © 2012 by the authors; licensee MDPI, Basel, Switzerland.

Li C.-J.,Temple University | Li C.-J.,Key Laboratory of Hormone and Development | Liu Y.,Temple University | Chen Y.,Temple University | And 3 more authors.
American Journal of Pathology | Year: 2013

Cigarette smoking damages the extracellular matrix in a variety of locations, leading to atherosclerotic plaque instability and emphysematous lung destruction, but the underlying mechanisms remain poorly understood. Here, we sought to determine whether exposure of human macrophages, a key participant in extracellular matrix damage, to tobacco smoke extract (TSE) induces the release of microvesicles (MVs; or microparticles) with proteolytic activity; the major proteases involved; and the cellular mechanisms that might mediate their generation. We found that MVs released from TSE-exposed macrophages carry substantial gelatinolytic and collagenolytic activities that surprisingly can be predominantly attributed to a single transmembrane protease of the matrix metalloproteinase (MMP) superfamily (namely, MMP14). Flow cytometric counts revealed that exposure of human macrophages to TSE for 20 hours more than quadrupled their production of MMP14-positive MVs (control, 1112 ± 231; TSE-induced, 5823 ± 2192 MMP14-positive MVs/μL of conditioned medium; means ± SEM; n = 6; P < 0.01). Our results indicate that the production of these MVs by human macrophages relies on a series of regulated steps that include activation of two mitogen-activated protein kinases (MAPKs, i.e., the Jun N-terminal kinase and p38 MAPK), and then MAPK-dependent induction and maturation of cellular MMP14, a remarkable accumulation of MMP14 into nascent plasma membrane blebs, and finally caspase- and MAPK-dependent apoptosis and apoptotic microvesicle generation. Proteolytically active MVs induced by tobacco smoke may be novel mediators of clinical important matrix destruction in smokers. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

Li Z.,Key Laboratory of Hormone and Development | Ni C.-L.,Key Laboratory of Hormone and Development | Niu W.-Y.,Key Laboratory of Hormone and Development | Niu W.-Y.,Tianjin Medical University | And 2 more authors.
Diabetology and Metabolic Syndrome | Year: 2015

Objective: Endothelial dysfunction which is induced by serum saturated fatty acids increasing is one of pathogenesis of diabetic retinopathy (DR). The intestinal fatty acid binding protein-2 (FABP2) Ala54Thr polymorphism results in serum saturated fatty acids elevating. In the present study, we assessed the association of FABP2 gene polymorphism (Ala54Thr) with DR in Chinese population. Materials/Methods: In this case-control association study, 810 T2DM patients were recruited. 420 patients with retinal neovascularization, microneurysms and hemorrhages were considered as cases (DR) and 390 patients with T2DM and no clinical signs of retinopathy (DNR), were recruited as controls. Genotypes for FABP2(Ala54Thr) polymorphisms were assessed with the PCR-RFLP method. Results: A significant difference in genotype distribution and allele frequency was observed between cases and controls. Patients with DR had significantly higher frequency of the Ala/Thr + Thr/Thr genotypes compared to DNR group [62.6% vs. 46.2%; OR (95% CI), 1.95 (1.48-2.59); p < 0.001]. The DR group showed a significantly higher frequency of the the Thr allele compared to the DNR group [39.5% vs. 29.4%; OR (95% CI), 1.56 (1.16-2.09); p = 0.003]. Binary logistic analyses showed FFA levels (p = 0.014) and Ala54Thr (p = 0.011) were independent correlates of the presence of DR. Conclusions: We examined that FABP2 polymophism on the Ala54Thr is significant and independent associated with DR. © 2015 Li et al.; licensee BioMed Central.

Wang J.-Y.,Key Laboratory of Hormone and Development | Yang J.-H.,Key Laboratory of Hormone and Development | Xu J.,Key Laboratory of Hormone and Development | Jia J.-Y.,Tianjin Medical University | And 9 more authors.
Journal of Diabetes and its Complications | Year: 2015

Aims Growing evidences suggest that acute hyperglycemia is strongly related to kidney injury. Our study aimed to investigate the effects of acute hyperglycemia on kidney glomerular and tubular impairment in non-diabetic conscious rats. Methods Non-diabetic conscious rats were randomly subjected to 6 h of saline (control group) or high glucose (acute hyperglycemia group) infusion. Blood glucose was maintained at 16.0-18.0 mmol/L in acute hyperglycemia group. Renal structure and function alterations, systemic/renal inflammation and oxidative stress markers were assessed, and apoptosis markers of renal inherent cells were evaluated. Results Acute hyperglycemia caused significant injury to structure of glomerular filtration barrier, tubular epithelial cells and peritubular vascular endothelial cells. It increased urinary microalbumin (68.01 ± 27.09 μg/24 h vs 33.81 ± 13.81 μg/24 h, P = 0.014), β2-microglobulin, Cystatin C, urinary and serous neutrophil gelatinase-associated lipocalin levels (P < 0.05). Acute hyperglycemia decreased megalin and cubilin expression, activated systemic and renal oxidative stress as well as inflammation and promoted renal inherent cell apoptosis. Conclusions Acute hyperglycemia causes significant injury to kidney function and structure. Compared with damages of glomerular filtration barrier, renal tubular injury may contribute more to acute hyperglycemia induced proteinuria. Activation of inflammation especially renal inflammation, oxidative stress and enhanced apoptosis may be the underlying mechanisms. © 2015 Elsevier Inc.

Discover hidden collaborations