Time filter

Source Type

Gu F.,Spice and Beverage Research Institute | Gu F.,Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops | Xu F.,Spice and Beverage Research Institute | Xu F.,Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops | And 8 more authors.
Molecules | Year: 2012

Vanillin was extracted from vanilla beans using pretreatment with cellulase to produce enzymatic hydrolysis, and response surface methodology (RSM) was applied to optimize the processing parameters of this extraction. The effects of heating time, enzyme quantity and temperature on enzymatic extraction of vanillin were evaluated. Extraction yield (mg/g) was used as the response value. The results revealed that the increase in heating time and the increase in enzyme quantity (within certain ranges) were associated with an enhancement of extraction yield, and that the optimal conditions for vanillin extraction were: Heating time 6 h, temperature 60 °C and enzyme quantity 33.5 mL. Calculated from the final polynomial functions, the optimal response of vanillin extraction yield was 7.62 mg/g. The predicted results for optimal reaction conditions were in good agreement with experimental values.


Chen Y.-G.,Huazhong Agricultural University | Chen Y.-G.,Spice and Beverage Research Institute | Gu F.-L.,Spice and Beverage Research Institute | Gu F.-L.,Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops | And 8 more authors.
Current Microbiology | Year: 2015

A Gram-positive bacterium, designated strain XY18T, was isolated from a cured vanilla bean in Hainan province, China. Cells were rod-shaped, endospore producing, and peritrichous flagella. Strain XY18T grew at salinities of 0–8 % (w/v) NaCl (optimally 1–4 %), pH 4.0–8.0 (optimally 5.0–7.0 %) and temperature range 20–45 °C (optimally 28–35 °C). The predominant menaquinone was MK-7. The major cellular fatty acids were anteiso-C15:0, iso-C15:0, anteiso-C17:0, and iso-C17:0. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain XY18T was a member of the genus Bacillus, and closely related to B. amyloliquefaciens NBRC 15535T and B. siamensis PD-A10T, with 99.1 and 99.2 % sequence similarity, respectively. However, the DNA–DNA hybridization value between strain XY18T and B. amyloliquefaciens NBRC 15535T was 35.7 %. The genomic DNA G+C content of strain XY18T was 46.4 mol%, significantly differed from B. siamensis PD-A10T (41.4 %), which was higher than the range of 4 % indicative of species. On the basis of polyphasic taxonomic study, including phenotypic features, chemotaxonomy, and phylogenetic analyses, strain XY18T represents a novel species within the genus Bacillus, for which the name Bacillusvanillea sp. nov. is proposed. The type strain is XY18T (=CGMCC 8629 = NCCB 100507). © 2014, Springer Science+Business Media New York.


Gu F.,Spice and Beverage Research Institute | Gu F.,Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops | Tan L.,Spice and Beverage Research Institute | Tan L.,Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops | And 6 more authors.
Food Chemistry | Year: 2013

This paper investigates polyphenol oxidase (PPO) activity, reduced weight percentage after sun drying, and the changes in colour and appearance of green pepper (Piper nigrum Linnaeus) berries after blanching and sun drying. The results show that the degree of reduced weight percentage and browning in green pepper berries after blanching for 10 min is greater at 100 °C than at 90 and 80 °C. Moreover, the samples blanched at 100 °C for 10 min had the fastest water loss, but the lowest PPO activity. Thus, the PPO enzymatic oxidation of polyphenols might not be the only reason for the browning of green pepper berries. This result is significantly different from that of Variyar, Pendharkar, Banerjeea, and Bandyopadhyay (1988) and therefore deserves further study. © 2012 Elsevier Ltd. All rights reserved.


Dong Z.,Spice and Beverage Research Institute | Dong Z.,Huazhong Agricultural University | Dong Z.,Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops | Gu F.,Spice and Beverage Research Institute | And 6 more authors.
Food Chemistry | Year: 2014

Vanillin yield, microscopic structure, antioxidant activity and overall odour of vanilla extracts obtained by different treatments were investigated. MAE showed the strongest extraction power, shortest time and highest antioxidant activity. Maceration gave higher vanillin yields than UAE and PAE, similar antioxidant activity with UAE, but longer times than UAE and PAE. Overall odour intensity of different vanilla extracts obtained by UAE, PAE and MAE were similar, while higher than maceration extracts. Then, powered vanilla bean with a sample/solvent ratio of 4 g/100 mL was selected as the optimum condition for MAE. Next, compared with other three equations, two-site kinetic equation with lowest RMSD and highest Radj2 was shown to be more suitable in describing the kinetics of vanillin extraction. By fitting the parameters Ceq, k1, k2, and f, a kinetics model was constructed to describe vanillin extraction in terms of irradiation power, ethanol concentration, and extraction time. © 2013 Elsevier Ltd. All rights reserved.


Dong Z.,Chinese Academy of Tropical Agricultural | Dong Z.,Huazhong Agricultural University | Gu F.,Chinese Academy of Tropical Agricultural | Gu F.,Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops | And 4 more authors.
Journal of Chinese Institute of Food Science and Technology | Year: 2015

Contents of four main odor components in Tonga, Comorin and Hainan vanilla, and antioxidant activity of vanilla extracts were compared. SPME-GC-MS was used to analyze the odor components in the three kinds of vanilla. The results indicate that, compared with the other two vanilla, Tonga vanilla contained the highest 4-hydroxy benzalde-hyde and 4-hydroxybenzoic acid content and owned similar vanillin content to Hainan vanilla, however Comorin vanilla had the highest content of vanillic acid. Tonga vanilla extracts showed the strongest antioxidant activity, followed by Comorin vanilla and Hainan vanilla showed the lowest activity. 64, 65 and 71 components were indentified in Tonga Comorin and Hainan vanilla respectively, and in which 2,3-butanedione, acetic acid, 2-butanone 3-hydroxy, 2 3-butane-diol, furfural, phenol, phenol 4-methyl, phenol 2-methoxy and vanillin were with high content and changed according the variety of vanilla. Aromatic compounds with the highest contents in these three kinds of vanilla were the most important odor compounds in vanilla. ©, 2015, Chinese Institute of Food Science and Technology. All right reserved.


Chen Y.,Spice and Beverage Research Institute | Chen Y.,Huazhong Agricultural University | Chen Y.,Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops | Gu F.,Spice and Beverage Research Institute | And 8 more authors.
Applied and Environmental Microbiology | Year: 2015

Vanilla beans were analyzed using biochemical methods, which revealed that glucovanillin disperses from the inner part to the outer part of the vanilla bean during the curing process and is simultaneously hydrolyzed by β-D-glucosidase. Enzymatic hydrolysis was found to occur on the surface of the vanilla beans. Transcripts of the β-D-glucosidase gene (bgl) of colonizing microorganisms were detected. The results directly indicate that colonizing microorganisms are involved in glucovanillin hydrolysis. Phylogenetic analysis based on 16S rRNA gene sequences showed that the colonizing microorganisms mainly belonged to the Bacillus genus. bgl was detected in all the isolates and presented clustering similar to that of the isolate taxonomy. Furthermore, inoculation of green fluorescent protein-tagged isolates showed that the Bacillus isolates can colonize vanilla beans. Glucovanillin was metabolized as the sole source of carbon in a culture of the isolates within 24 h. These isolates presented unique glucovanillin degradation capabilities. Vanillin was the major volatile compound in the culture. Other compounds, such as α-cubebene, β-pinene, and guaiacol, were detected in some isolate cultures. Colonizing Bacillus isolates were found to hydrolyze glucovanillin in culture, indirectly demonstrating the involvement of colonizing Bacillus isolates in glucovanillin hydrolysis during the vanilla curing process. Based on these results, we conclude that colonizing Bacillus isolates produce β-D-glucosidase, which mediates glucovanillin hydrolysis and influences flavor formation. © 2015, American Society for Microbiology.


Qin X.-W.,Chinese Academy of Agricultural Sciences | Qin X.-W.,Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops | Hao C.-Y.,Chinese Academy of Agricultural Sciences | Hao C.-Y.,Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops | And 10 more authors.
Molecules | Year: 2014

Headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to identify the volatile organic compounds (VOCs) of the different flower development stages of Cananga odorata for the evaluation of floral volatile polymorphism as a basis to determine the best time of harvest. Electronic nose results, coupled with discriminant factor analysis, suggested that emitted odors varied in different C. odorata flower development stages, including the bud, display-petal, initial-flowering, full-flowering, end-flowering, wilted-flower, and dried flower stages. The first two discriminant factors explained 97.52% of total system variance. Ninety- Two compounds were detected over the flower life, and the mean Bray-Curtis similarity value was 52.45% among different flower development stages. A high level of volatile polymorphism was observed during flower development. The VOCs were largely grouped as hydrocarbons, esters, alcohols, aldehydes, phenols, acids, ketones, and ethers, and the main compound was β-caryophyllene (15.05%-33.30%). Other identified compounds were β-cubebene, D-germacrene, benzyl benzoate, and α-cubebene. Moreover, large numbers of VOCs were detected at intermediate times of flower development, and more hydrocarbons, esters, and alcohols were identified in the full-flowering stage. The full-flowering stage may be the most suitable period for C. odorata flower harvest.


Li F.,Chinese Academy of Sciences | Li F.,Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops | Li F.,Hainan Provincial Key Laboratory of Genetic Improvement | Wu B.,Chinese Academy of Sciences | And 17 more authors.
Gene | Year: 2014

In this study, we performed cloning and expression analysis of six putative sucrose transporter genes, designated TcSUT1, TcSUT2, TcSUT3, TcSUT4, TcSUT5 and TcSUT6, from the cacao genotype 'TAS-R8'. The combination of cDNA and genomic DNA sequences revealed that the cacao SUT genes contained exon numbers ranging from 1 to 14. The average molecular mass of all six deduced proteins was approximately 56. kDa (range 52 to 66. kDa). All six proteins were predicted to exhibit typical features of sucrose transporters with 12 trans-membrane spanning domains. Phylogenetic analysis revealed that TcSUT2 and TcSUT4 belonged to Group 2 SUT and Group 4 SUT, respectively, and the other TcSUT proteins were belonging to Group 1 SUT. Real-time PCR was conducted to investigate the expression pattern of each member of the SUT family in cacao. Our experiment showed that TcSUT1 was expressed dominantly in pods and that, TcSUT3 and TcSUT4 were highly expressed in both pods and in bark with phloem. Within pods, TcSUT1 and TcSUT4 were expressed more in the seed coat and seed from the pod enlargement stage to the ripening stage. TcSUT5 expression sharply increased to its highest expression level in the seed coat during the ripening stage. Expression pattern analysis indicated that TcSUT genes may be associated with photoassimilate transport into developing seeds and may, therefore, have an impact on seed production. © 2014 Elsevier B.V.


Hao C.,Chinese Academy of Agricultural Sciences | Hao C.,Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops | Xia Z.,Chinese Academy of Agricultural Sciences | Fan R.,Chinese Academy of Agricultural Sciences | And 11 more authors.
BMC Genomics | Year: 2016

Background: Piper nigrum L., or "black pepper", is an economically important spice crop in tropical regions. Black pepper production is markedly affected by foot rot disease caused by Phytophthora capsici, and genetic improvement of black pepper is essential for combating foot rot diseases. However, little is known about the mechanism of anti- P. capsici in black pepper. The molecular mechanisms underlying foot rot susceptibility were studied by comparing transcriptome analysis between resistant (Piper flaviflorum) and susceptible (Piper nigrum cv. Reyin-1) black pepper species. Results: 116,432 unigenes were acquired from six libraries (three replicates of resistant and susceptible black pepper samples), which were integrated by applying BLAST similarity searches and noted by adopting Kyoto Encyclopaedia of Genes and Gene Ontology (GO) genome orthology identifiers. The reference transcriptome was mapped using two sets of digital gene expression data. Using GO enrichment analysis for the differentially expressed genes, the majority of the genes associated with the phenylpropanoid biosynthesis pathway were identified in P. flaviflorum. In addition, the expression of genes revealed that after susceptible and resistant species were inoculated with P. capsici, the majority of genes incorporated in the phenylpropanoid metabolism pathway were up-regulated in both species. Among various treatments and organs, all the genes were up-regulated to a relatively high degree in resistant species. Phenylalanine ammonia lyase and peroxidase enzyme activity increased in susceptible and resistant species after inoculation with P. capsici, and the resistant species increased faster. The resistant plants retain their vascular structure in lignin revealed by histochemical analysis. Conclusions: Our data provide critical information regarding target genes and a technological basis for future studies of black pepper genetic improvements, including transgenic breeding. © 2016 The Author(s).


PubMed | Chinese Academy of Sciences, University of America, Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops and Hainan Provincial Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops
Type: Journal Article | Journal: Genetics and molecular research : GMR | Year: 2015

Black pepper is a perennial climbing vine. It is widely cultivated because its berries can be utilized not only as a spice in food but also for medicinal use. This study aimed to construct a standardized, high-quality cDNA library to facilitated identification of new Piper hainanense transcripts. For this, 262 unigenes were used to generate raw reads. The average length of these 262 unigenes was 774.8 bp. Of these, 94 genes (35.9%) were newly identified, according to the NCBI protein database. Thus, identification of new genes may broaden the molecular knowledge of P. hainanense on the basis of Clusters of Orthologous Groups and Gene Ontology categories. In addition, certain basic genes linked to physiological processes, which can contribute to disease resistance and thereby to the breeding of black pepper. A total of 26 unigenes were found to be SSR markers. Dinucleotide SSR was the main repeat motif, accounting for 61.54%, followed by trinucleotide SSR (23.07%). Eight primer pairs successfully amplified DNA fragments and detected significant amounts of polymorphism among twenty-one piper germplasm. These results present a novel sequence information of P. hainanense, which can serve as the foundation for further genetic research on this species.

Loading Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops collaborators
Loading Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops collaborators