Time filter

Source Type

Li C.-J.,Huazhong University of Science and Technology | Li C.-J.,Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation | Lu Y.,Huazhong University of Science and Technology | Zhou M.,Huazhong University of Science and Technology | And 2 more authors.
Journal of Neural Transmission

The recording of hippocampal and cortical long-term potentiation (LTP) in rats in vivo is an appropriate and commonly used method to describe changes in cellular mechanisms underlying synaptic plasticity. Recently, we introduced a method for the simultaneous recording of LTP in bilateral CA1 regions and parietal association cortex (PtA), and observed differences between the Schaffer collateral-CA1 pathway (SC), Schaffer collateral/associational commissural pathway (SAC) and Schaffer collateral/associational commissural-cortex pathway (SACC). In this study, we found that (1) synaptic transmission of the SAC and SACC pathways depended on hippocampal commissural fibers [dorsal and ventral hippocampal commissural fibers, the medial septum (MS) and hippocampal CA3 commissural fibers], (2) nerve conduction velocity of the SACC pathway might be higher than that of the SAC pathway, (3) the input/output (I/O) curve of the SC pathway was shifted to the left side, compared to that of the SAC and SACC pathways, (4) all three pathways could induce stable LTP; however, LTP of the SAC and SACC pathways was much stronger than that of the SC pathway, (5) the degree of paired-pulse facilitation (PPF) was weaker in the SC pathway than that in the SAC and SACC pathways, (6) after cutting off the corpus callosum and commissural fibers, spatial learning and memory were impaired, and the ability to explore the novel environment and spontaneous locomotor activity were weakened. Taken together, our results suggested that hippocampal commissural fibers were very important for exchanging information between hemispheres, and basic differences in electrophysiological properties of hippocampal-cortical neural networks play a vital role in the processes of learning and memory. © 2014 Springer-Verlag Wien. Source

Li C.-J.,Huazhong University of Science and Technology | Li C.-J.,Huanggang Normal University | Lu Y.,Huazhong University of Science and Technology | Zhou M.,Huazhong University of Science and Technology | And 8 more authors.
Molecular Neurobiology

Hyperpolarization-activated cyclic-nucleotide-gated cation nonselective (HCN) channels are involved in the pathology of nervous system diseases. HCN channels and γ-aminobutyric acid (GABA) receptors can mutually co-regulate the function of neurons in many brain areas. However, little is known about the co-regulation of HCN channels and GABA receptors in the chronic ischemic rats with possible features of vascular dementia. Protein kinase A (PKA) and TPR containing Rab8b interacting protein (TRIP8b) can modulate GABAB receptors cell surface stability and HCN channel trafficking, respectively, and adaptor-associated kinase 1 (AAK1) inhibits the function of the major TRIP8b-interacting protein adaptor protein 2 (AP2) via phosphorylating the AP2 μ2 subunit. Until now, the role of these regulatory factors in chronic cerebral hypoperfusion is unclear. In the present study, we evaluated whether and how HCN channels and GABAB receptors were pathologically altered and investigated neuroprotective effects of GABAB receptors activation and cross-talk networks between GABAB receptors and HCN channels in the hippocampal CA1 area in chronic cerebral hypoperfusion rat model. We found that cerebral hypoperfusion for 5 weeks by permanent occlusion of bilateral common carotid arteries (two-vessel occlusion, 2VO) induced marked spatial and nonspatial learning and memory deficits, significant neuronal loss and decrease in dendritic spine density, impairment of long-term potentiation (LTP) at the Schaffer collateral-CA1 synapses, and reduction of surface expression of GABAB R1, GABAB R2, and HCN1, but increase in HCN2 surface expression. Meanwhile, the protein expression of TRIP8b (1a-4), TRIP8b (1b-2), and AAK1 was significantly decreased. Baclofen, a GABAB receptor agonist, markedly improved the memory impairment and alleviated neuronal damage. Besides, baclofen attenuated the decrease of surface expression of GABAB R1, GABAB R2, and HCN1, but downregulated HCN2 surface expression. Furthermore, baclofen could restore expression of AAK1 protein and significantly increase p-PKA, TRIP8b (1a-4), TRIP8b (1b-2), and p-AP2 μ2 expression. Those findings suggested that, under chronic cerebral hypoperfusion, activation of PKA could attenuate baclofen-induced decrease in surface expression of GABAB R1 and GABAB R2, and activation of GABAB receptors not only increased the expression of TRIP8b (1a-4) and TRIP8b (1b-2) but also regulated the function of TRIP8b via AAK1 and p-AP2 μ2, which restored the balance of HCN1/HCN2 surface expression in rat hippocampal CA1 area, and thus ameliorated cognitive impairment. © 2014, Springer Science+Business Media New York. Source

Li C.-J.,Huazhong University of Science and Technology | Li C.-J.,Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation | Zhou M.,Huazhong University of Science and Technology | Li H.-G.,Johannes Gutenberg University Mainz | And 6 more authors.
Cellular and Molecular Neurobiology

Activation of alpha2-adrenoceptors inhibits long-term potentiation and long-term depression in many brain regions. However, effectiveness and mechanism of alpha2-adrenoceptors for synaptic plasticity at the Schaffer collateral-CA1 synapses in rat in vivo is unclear. In the present study, we investigated the effects of alpha2-adrenoceptors agonist clonidine on high-frequency stimulation (HFS)-induced long-term potentiation (LTP) and paired-pulse facilitation (PPF) at the Schaffer collateral-CA1 synapse of rat hippocampus in vivo. Clonidine (0.05, 0.1 mg/kg, ip) inhibited synaptic plasticity in a dose-dependent manner, accompanying with the decreasing of aortic pressure and heart rate (HR) in anesthetized rats. Clonidine (1.25, 2.5 μg/kg, icv, 10 min before HFS) also dose-dependently inhibited synaptic plasticity, which had no remarkable effect on HR and aortic pressure. But, 20 min after HFS, administration of clonidine (2.5 μg/kg) had no effect on LTP. The inhibitory effect of clonidine (2.5 μg/kg) on LTP was completely reversed by yohimbine (18 μg/kg, icv) and ZD7288 (5 μg/kg, icv). Moreover, the inhibition was accompanied by a significant increase of the normalized PPF ratio. Furthermore, clonidine at 1 and 10 μM significantly decreased glutamate (Glu) content in the culture supernatants of hippocampal neurons, and yohimbine at 1 and 10 μM had no effect on Glu release, while it could reverse the inhibition of clonidine (1 and 10 μM) on Glu release. In conclusion, clonidine can suppress the induction of LTP at the Schaffer collateral-CA1 synapse, and the possible mechanism is that activation of presynaptic alpha2-adrenoceptors reduces the Glu release by inhibiting HCN channels. © 2013 Springer Science+Business Media New York. Source

Pan L.-N.,Huazhong University of Science and Technology | Zhu W.,Huazhong University of Science and Technology | Zhu W.,Johns Hopkins University | Li Y.,Huazhong University of Science and Technology | And 7 more authors.

Background: Cerebral ischemic preconditioning (IPC) protects brain against ischemic injury. Activation of Toll-like receptor 3 (TLR3) signaling can induce neuroprotective mediators, but whether astrocytic TLR3 signaling is involved in IPC-induced ischemic tolerance is not known. Methods: IPC was modeled in mice with three brief episodes of bilateral carotid occlusion. In vitro, IPC was modeled in astrocytes by 1-h oxygen-glucose deprivation (OGD). Injury and components of the TLR3 signaling pathway were measured after a subsequent protracted ischemic event. A neutralizing antibody against TLR3 was used to evaluate the role of TLR3 signaling in ischemic tolerance. Results: IPC in vivo reduced brain damage from permanent middle cerebral artery occlusion in mice and increased expression of TLR3 in cortical astrocytes. IPC also reduced damage in isolated astrocytes after 12-h OGD. In astrocytes, IPC or 12-h OGD alone increased TLR3 expression, and 12-h OGD alone increased expression of phosphorylated NFκB (pNFκB). However, IPC or 12-h OGD alone did not alter the expression of Toll/interleukin receptor domain-containing adaptorinducing IFNβ (TRIF) or phosphorylated interferon regulatory factor 3 (pIRF3). Exposure to IPC before OGD increased TRIF and pIRF3 expression but decreased pNFκB expression. Analysis of cytokines showed that 12-h OGD alone increased IFNβ and IL-6 secretion; 12-h OGD preceded by IPC further increased IFNβ secretion but decreased IL-6 secretion. Preconditioning with TLR3 ligand Poly I:C increased pIRF3 expression and protected astrocytes against ischemic injury; however, cells treated with a neutralizing antibody against TLR3 lacked the IPC- and Poly I:C-induced ischemic protection and augmentation of IFNβ. Conclusions: The results suggest that IPC-induced ischemic tolerance is mediated by astrocytic TLR3 signaling. This reprogramming of TLR3 signaling by IPC in astrocytes may play an important role in suppression of the post-ischemic inflammatory response and thereby protect against ischemic damage. The mechanism may be via activation of the TLR3/TRIF/IRF3 signaling pathway. © 2014 Pan et al. Source

Pan L.-N.,Huazhong University of Science and Technology | Pan L.-N.,Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation | Zhu W.,Huazhong University of Science and Technology | Li C.,Huazhong University of Science and Technology | And 7 more authors.
Acta Pharmacologica Sinica

Aim:To examine the neuroprotective effects of the Toll-like receptor 3 (TLR3) agonist Poly I:C in acute ischemic models in vitro and in vivo.Methods:Primary astrocyte cultures subjected to oxygen-glucose deprivation (OGD) were used as an in vitro simulated ischemic model. Poly I:C was administrated 2 h before OGD. Cell toxicity was measured using MTT assay and LDH leakage assay. The levels of TNFα, IL-6 and interferon-β (IFNβ) in the media were measured using ELISA. Toll/interleukin receptor domain-containing adaptor-inducing IFNβ (TRIF) protein levels were detected using Western blot analysis. A mouse middle cerebral artery occlusion (MCAO) model was u sed for in vivo study. The animals were administered Poly I:C (0.3 mg/kg, im) 2 h before MCAO, and examined with neurological deficit scoring and TTC staining. The levels of TNFα and IL-6 in ischemic brain were measured using ELISA.Results:Pretreatment with Poly I:C (10 and 20 μg/mL) markedly attenuated OGD-induced astrocyte injury, and significantly raised the cell viability and reduced the LDH leakage. Poly I:C significantly upregulated TRIF expression accompanied by increased downstream IFNβ production. Moreover, Poly I:C significantly suppressed the pro-inflammatory cytokines TNFα and IL-6 production. In mice subjected to MCAO, administration of Poly I:C significantly attenuated the neurological deficits, reduced infarction volume, and suppressed the increased levels of TNFα and IL-6 in the ischemic striatum and cortex.Conclusion:Poly I:C pretreatment exerts neuroprotective and anti-inflammatory effects in the simulated cerebral ischemia models, and the neuroprotection is at least in part due to the activation of the TLR3-TRIF pathway. © 2012 CPS and SIMM. Source

Discover hidden collaborations