Time filter

Source Type

Hong Y.,Zhejiang Provincial Peoples Hospital | Zhang Q.,Zhejiang University | Zhang Q.,Key Laboratory of Cancer Prevention and Intervention
Tumor Biology | Year: 2016

Most patients with cancers died of distant metastasis. It is always difficult to find cancer metastasis in early time, let alone to prevent or cure it. Currently, oncologists place high hopes on circulating tumor cell (CTC), which, compared to current imaging methods, is found more sensitive for early metastasis. Recently, techniques for CTC enrichment and identification are developing quickly. However, there are great challenges in the clinical interpretation of CTC assessments. Increasing studies have shown the heterogeneity of CTCs, which may play different roles in cancer metastasis. Epithelial-mesenchymal transition is not only the main mechanism of the cancer cells invading the circulation system but also a distinguished characteristic of CTCs. Investigators are trying to differentiate specific subgroups of CTCs that are truly responsible for cancer metastasis. Here, we reviewed the current evidences on epithelial-mesenchymal transition of CTCs from perspectives of enrichment methods, biology, and its subgroups. © 2016 International Society of Oncology and BioMarkers (ISOBM) Source

Wang G.,Zhejiang University | Zhang J.,Zhejiang University | Liu L.,Zhejiang Cancer Hospital | Sharma S.,University of California at Los Angeles | And 2 more authors.
PLoS ONE | Year: 2012

Background: The dose-dependent toxicities of doxorubicin (DOX) limit its clinical applications, particularly in drug-resistant cancers, such as liver cancer. In this study, we investigated the role of quercetin on the antitumor effects of DOX on liver cancer cells and its ability to provide protection against DOX-mediated liver damage in mice. Methodology and Results: The MTT and Annexin V/PI staining assay demonstrated that quercetin selectively sensitized DOX-induced cytotoxicity against liver cancer cells while protecting normal liver cells. The increase in DOX-mediated apoptosis in hepatoma cells by quercetin was p53-dependent and occurred by downregulating Bcl-xl expression. Z-VAD-fmk (caspase inhibitor), pifithrin-α (p53 inhibitor), or overexpressed Bcl-xl decreased the effects of quercetin on DOX-mediated apoptosis. The combined treatment of quercetin and DOX significantly reduced the growth of liver cancer xenografts in mice. Moreover, quercetin decreased the serum levels of alanine aminotransferase and aspartate aminotransferase that were increased in DOX-treated mice. Quercetin also reversed the DOX-induced pathological changes in mice livers. Conclusion and Significance: These results indicate that quercetin potentiated the antitumor effects of DOX on liver cancer cells while protecting normal liver cells. Therefore, the development of quercetin may be beneficial in a combined treatment with DOX for increased therapeutic efficacy against liver cancer. © 2012 Wang et al. Source

Guo C.,Key Laboratory of Cancer Prevention and Intervention | Jiang K.,Hangzhou Normal University | Zheng S.,Key Laboratory of Cancer Prevention and Intervention
Rapid Communications in Mass Spectrometry | Year: 2014

RATIONALE: Electrospray ionization mass spectrometry (ESI-MS) combined with the collision-induced dissociation (CID) technique has assumed increasing importance as an invaluable tool for the structural analysis of organic and biological molecules. However, general rules for elucidating the fragmentation behaviors of charged molecules in the gas phase are still lacking. Therefore, explorations on the mechanistic information are desirable at all times. METHODS: CID experiments of protonated N-benzyltetrahydroquinolines were carried out on ESI ion trap mass spectrometer and accurate mass measurements were performed on a high-resolution ESI quadrupole time-of-flight (Q-TOF) mass spectrometer in positive ion mode. RESULTS: An ion/neutral complex, [RC6H 4CH2 +/tetrahydroquinoline], resulting from cleavage of the C-N bond induced by the positive charge brought in by protonation, was proposed to be the intermediate to elucidate the fragmentation reactions. For all the compounds investigated, benzyl cation transfer, electron transfer and hydride transfer reactions mediated by the complex were observed. Moreover, for the compound substituted by a methyl group at the para-position of the benzylic phenyl ring, proton transfer reaction via the complex also occurs. CONCLUSIONS: This study is a case for better understanding the intriguing roles of ion/neutral complexes in gas-phase fragmentation reactions and enriching the knowledge about the gas-phase chemistry of the benzyl cation. In addition, it provides useful information for researchers working on analysis or structural elucidation of complicated compounds which contain the N- benzyltetrahydroquinoline substructure. Copyright © 2014 John Wiley & Sons, Ltd. Source

Huang X.,Key Laboratory of Cancer Prevention and Intervention | Su K.,Zhejiang University | Zhou L.,Zhejiang University | Shen G.,Zhejiang University | And 3 more authors.
Journal of Cellular Biochemistry | Year: 2013

Mesenchymal stromal cells (MSCs) in bone marrow may enhance tumor metastases through the secretion of chemokines. MSCs have been reported to home toward the hypoxic tumor microenvironment in vivo. In this study, we investigated prostate cancer PC3 cell behavior under the influence of hypoxia preconditioned MSCs and explored the related mechanism of prostate cancer lymphatic metastases in mice. Transwell assays revealed that VEGF-C receptor, VEGFR-3, as well as chemokine CCL21 receptor, CC chemokine receptor 7 (CCR7), were responsible for the migration of PC3 cells toward hypoxia preconditioned MSCs. Knock-in Ccr7 in PC3 cells also improved cell migration in vitro. Furthermore, when PC3 cells were labeled using the hrGfp-lentiviral vector, and were combined with hypoxia preconditioned MSCs for xenografting, it resulted in an enhancement of lymph node metastases accompanied by up-regulation of VEGFR-3 and CCR7 in primary tumors. Both PI3K/Akt/IκBα and JAK2/STAT3 signaling pathways were activated in xenografts in the presence of hypoxia-preconditioned MSCs. Unexpectedly, the p-VEGFR-2/VEGFR-2 ratio was attenuated accompanied by decreased JAK1 expression, indicating a switching-off of potential vascular signal within xenografts in the presence of hypoxia-preconditioned MSCs. Unlike results from other studies, VEGF-C maintained a stable expression in both conditions, which indicated that hypoxia preconditioning of MSCs did not influence VEGF-C secretion. Our results provide the new insights into the functional molecular events and signalings influencing prostate tumor metastases, suggesting a hopeful diagnosis and treatment in new approaches. © 2013 Wiley Periodicals, Inc. Source

Meng Z.,Beckman Research Institute | Li T.,Beckman Research Institute | Ma X.,Beckman Research Institute | Wang X.,Beckman Research Institute | And 15 more authors.
Molecular Cancer Therapeutics | Year: 2013

Liver cancer is the third leading cause of cancer deaths worldwide but no effective treatment toward liver cancer is available so far. Therefore, there is an unmet medical need to identify novel therapies to efficiently treat liver cancer and improve the prognosis of this disease. Here, we report that berbamine and one of its derivatives, bbd24, potently suppressed liver cancer cell proliferation and induced cancer cell death by targeting Ca2+ /calmodulin-dependent protein kinase II (CAMKII). Furthermore, berbamine inhibited the in vivo tumorigenicity of liver cancer cells in NOD/SCID mice and downregulated the self-renewal abilities of liver cancer-initiating cells. Chemical inhibition or short hairpin RNA-mediated knockdown of CAMKII recapitulated the effects of berbamine, whereas overexpression of CAMKII promoted cancer cell proliferation and increased the resistance of liver cancer cells to berbamine treatments. Western blot analyses of human liver cancer specimens showed that CAMKII was hyperphosphorylated in liver tumors compared with the paired peritumor tissues, which supports a role of CAMKII in promoting human liver cancer progression and the potential clinical use of berbamine for liver cancer therapies. Our data suggest that berbamine and its derivatives are promising agents to suppress liver cancer growth by targeting CAMKII. © 2013 AACR. Source

Discover hidden collaborations