Key Laboratory of Biology and Genetic Improvement of Oil Crops

Wuhan, China

Key Laboratory of Biology and Genetic Improvement of Oil Crops

Wuhan, China

Time filter

Source Type

Yu J.,Key Laboratory of Biology and Genetic Improvement of Oil Crops | Dossa K.,Key Laboratory of Biology and Genetic Improvement of Oil Crops | Wang L.,Key Laboratory of Biology and Genetic Improvement of Oil Crops | Zhang Y.,Key Laboratory of Biology and Genetic Improvement of Oil Crops | And 3 more authors.
Nucleic Acids Research | Year: 2017

Microsatellite DNAs (or SSRs) are important genomic components involved in many important biological functions. SSRs have been extensively exploited as molecular markers for diverse applications including genetic diversity, linkage/association mapping of gene/QTL, marker-assisted selection, variety identification and evolution analysis. However, a comprehensive database or web service for studying microsatellite DNAs and marker development in plants is lacking. Here, we developed a database, PMD-Base, which integrates large amounts of microsatellite DNAs from genome sequenced plant species and includes a web service for microsatellite DNAs identification. In PMDBase, 26 230 099 microsatellite DNAs were identified spanning 110 plant species. Up to three pairs of primers were supplied for every microsatellite DNA. For 81 species, genomic features of the microsatellite DNAs (genic or non-genic) were supplied with the corresponding genes or transcripts from public databases. Microsatellite DNAs can be explored through browsing and searching modules with a user-friendly web interface and customized software. Furthermore, we developed MIS-Aweb and embedded Primer3web to help users to identify microsatellite DNAs and design corresponding primers in their own genomic sequences online. All datasets of microsatellite DNAs can be downloaded conveniently. PMDBase will be updated regularly with new available genome data and can be accessed freely via the address http://www.sesamebioinfo.org/PMDBase. © The Author(s) 2016.


Wang X.,Chinese Academy of Agricultural Sciences | Wang X.,Key Laboratory of Biology and Genetic Improvement of Oil Crops | Wang X.,Laboratory of Risk Assessment for Oilseeds Products Wuhan | Li P.,Chinese Academy of Agricultural Sciences | And 3 more authors.
Food Chemistry | Year: 2015

An automated, size-exclusion solid phase extraction (SPE)-UPLC-MS/MS protocol without pre-treatment of samples was developed to screen for four mycotoxins (OTA, ZEN, AFB1, and AFM1) in liquid milk and milk powder. Firstly, a mixed macropore-silica gel cartridge was established as a size-exclusion SPE column. The proposed methodology could be a candidate in green analytical chemistry because it saves on manpower and organic solvent. Permanent post-column infusion of mycotoxin standards was used to quantify matrix effects throughout the chromatographic run. Matrix-matched calibration could effectively compensate for matrix effects, which may be caused by liquid milk or milk powder matrix. Recovery of the four mycotoxins in fortified liquid milk was in the range 89-120% and RSD 2-9%. The LOD for the four mycotoxins in liquid milk and milk powder were 0.05-2 ng L-1 and 0.25-10 ng kg-1, respectively. The LOQ for the four mycotoxins in liquid milk and milk powder were 0.1-5 ng L-1 and 0.5-25 ng kg-1, respectively. © 2014 Elsevier Ltd. All rights reserved.


Wang Y.,Chinese Academy of Agricultural Sciences | Wang Y.,Key Laboratory of Biology and Genetic Improvement of Oil Crops | Wang Y.,Key Laboratory of Detection for Mycotoxins | Wang Y.,Laboratory of Risk Assessment for Oilseeds Products | And 12 more authors.
Analytical Chemistry | Year: 2013

Anti-idiotypic antibodies recognize the antigenic determinants of an antibody, thus they can be used as surrogate antigens. Single-domain antibodies from camlid heavy-chain antibodies with the benefit features of small size, thermostability, and ease in expression, are leading candidates to produce anti-idiotypic antibodies. In this work, we constructed an antibody phage library from the mRNA of an alpaca immunized with an antiaflatoxin monoclonal antibody (mAb) 1C11. Three anti-idiotypic VHH antibodies were isolated and applied to immunoassay toward aflatoxin as a coating antigen. The best immunoassay developed with one of these VHH antibodies shows an IC50 of 0.16 ng/mL toward aflatoxin B1 and cross-reactivity toward aflatoxin B2, G1, and G2 of 90.4%, 54.4%, and 37.7%, respectively. The VHH-based immunoassay was successfully applied to the analysis of peanuts, corn, and rice, which are the predominant commodities regularly contaminated by aflatoxins. A good correlation (r2 = 0.89) was found between the data obtained from the conventional ELISA and the ELISA based on a VHH coating antigen for the analysis of aflatoxins in peanuts and feedstuff. The use of biotechnology in developing the surrogate, the absence of standard aflatoxin and organic solvents in the synthesis procedures, and the reproducibility of the VHH antibody makes it an ideal strategy for replacing conventional synthesized antigens. © 2013 American Chemical Society.


Wang Y.,Chinese Academy of Agricultural Sciences | Wang Y.,Key Laboratory of Biology and Genetic Improvement of Oil Crops | Wang Y.,Key Laboratory of Detection for Mycotoxins | Wang Y.,Laboratory of Risk Assessment for Oilseeds Products Wuhan | And 9 more authors.
Journal of Agricultural and Food Chemistry | Year: 2013

To search for an alternative to using protein conjugated aflatoxin as a coating antigen in aflatoxin detection by an ELISA method, a random-8-peptide library was constructed and used as a source of peptides that mimic aflatoxins (termed as mimotopes). Five mimotope peptides were obtained by panning-elution from the library and were successfully used in an indirect competitive ELISA for analyzing total aflatoxin concentration. The assay exhibited an IC50 value of 14 μg/kg in samples (with 1 in 7 dilution of sample extract) for aflatoxins. The linear range is 4-24 μg/kg. Further validation indicated relatively good recovery (60-120%) in peanut, rice and corn. Natural contaminated samples (peanut and feedstuff) were analyzed for aflatoxin concentration by both conventional ELISA and phage ELISA. The results showed good correlation. It can be concluded that the mimotope preparation is an effective substitute for the aflatoxin based coating antigen in ELISA and can be used in real sample analysis. © 2013 American Chemical Society.


Li P.,Chinese Academy of Agricultural Sciences | Li P.,Key Laboratory of Biology and Genetic Improvement of Oil Crops | Li P.,Key Laboratory of Detection for Mycotoxins | Li P.,Laboratory of Risk Assessment for Oilseeds Products Wuhan | And 10 more authors.
Mass Spectrometry Reviews | Year: 2013

Mass spectrometric techniques are essential for advanced research in food safety and environmental monitoring. These fields are important for securing the health of humans and animals, and for ensuring environmental security. Mycotoxins, toxic secondary metabolites of filamentous fungi, are major contaminants of agricultural products, food and feed, biological samples, and the environment as a whole. Mycotoxins can cause cancers, nephritic and hepatic diseases, various hemorrhagic syndromes, and immune and neurological disorders. Mycotoxin-contaminated food and feed can provoke trade conflicts, resulting in massive economic losses. Risk assessment of mycotoxin contamination for humans and animals generally depends on clear identification and reliable quantitation in diversified matrices. Pioneering work on mycotoxin quantitation using mass spectrometry (MS) was performed in the early 1970s. Now, unambiguous confirmation and quantitation of mycotoxins can be readily achieved with a variety hyphenated techniques that combine chromatographic separation with MS, including liquid chromatography (LC) or gas chromatography (GC). With the advent of atmospheric pressure ionization, LC-MS has become a routine technique. Recently, the co-occurrence of multiple mycotoxins in the same sample has drawn an increasing amount of attention. Thus, modern analyses must be able to detect and quantitate multiple mycotoxins in a single run. Improvements in tandem MS techniques have been made to achieve this purpose. This review describes the advanced research that has been done regarding mycotoxin determination using hyphenated chromatographic-MS techniques, but is not a full-circle survey of all the literature published on this topic. The present work provides an overview of the various hyphenated chromatographic-MS-based strategies that have been applied to mycotoxin analysis, with a focus on recent developments. The use of chromatographic-MS to measure levels of mycotoxins, including aflatoxins, ochratoxins, patulin, trichothecenes, zearalenone, and fumonisins, is discussed in detail. Both free and masked mycotoxins are included in this review due to different methods of sample preparation. Techniques are described in terms of sample preparation, internal standards, LC/ultra performance LC (UPLC) optimization, and applications and survey. Several future hyphenated MS techniques are discussed as well, including multidimensional chromatography-MS, capillary electrophoresis-MS, and surface plasmon resonance array-MS. © 2013 Wiley Periodicals, Inc. Mass Spec Rev 32:420-452, 2013 © 2013 Wiley Periodicals, Inc.


Li P.,Chinese Academy of Agricultural Sciences | Li P.,Key Laboratory of Biology and Genetic Improvement of Oil Crops | Li P.,Key Laboratory of Detection for Mycotoxins | Li P.,Laboratory of Risk Assessment for Oilseeds Products Wuhan | And 9 more authors.
Electrophoresis | Year: 2012

Mycotoxin contamination in the food chain has caused serious health issues in humans and animals. Thus, a rapid on-site and lab-independent detection method for mycotoxins, such as aflatoxins (AFTs), is desirable. Microfluidic chip based immunosensor technology is one of the most promising methods for fast mycotoxin assays. In this review, we cover the major microfluidic immunosensors used for mycotoxin analysis, via flow-through (capillary electromigration) and lateral flow technology. Sample preparation from different matrices of agricultural products and foodstuffs is summarized. The choice of materials, fabrication strategies, and detection methods for microfluidic immunosensors are further discussed in detail. The sensors application in mycotoxin determination is also outlined. Finally, future challenges and opportunities are discussed. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


Zhang Y.,Wuhan University | Shen Y.Y.,Wuhan University | Wu X.M.,Key Laboratory of Biology and Genetic Improvement of Oil Crops | Wang J.B.,Wuhan University
Biologia Plantarum | Year: 2016

Members of the Brassicaceae family disperse their seeds through a mechanism commonly referred to as fruit dehiscence or pod shatter. Pod shatter is influenced by variations in valve margin structure and the molecular control pathways related to valve development. Anatomical patterns of the dehiscence zone from Brassica napus L., Brassica rapa L., Brassica carinata L. and Sinapis alba L., representing fruit types differing in pod shatter resistance, were compared using histological staining. The pod shatter-susceptible plant B. napus showed increased lignin deposition at the vascular bundle of the replum, as well as increased separation of cell layers. In pod shatter-resistant plants S. alba, B. rapa, and B. carinata, we observed two layers of lignified valve margin cells. From these four species, we isolated and identified homologs of SHATTERPROOF (SHP1, SHP2), INDEHISCENT (IND), ALCATRAZ (ALC), FRUITFULL (FUL), AGAMOUS (AG), NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 (NST1), and SEEDSTICK (STK) genes involved in fruit development and pod shatter in Arabidopsis. Transcriptional analysis of these eight genes was performed by RT-qPCR and the results demonstrated that differences in the expression patterns of eight genes may be associated with dehiscence variation within these four species. © 2016 Springer Science+Business Media Dordrecht


PubMed | Key Laboratory of Biology and Genetic Improvement of Oil Crops and Hubei University
Type: Journal Article | Journal: Genetics and molecular research : GMR | Year: 2016

ADP-glucose pyrophosphorylase (ADPGlcPPase) controls the first committed step of starch synthesis by catalyzing the biosynthesis of ADP-glucose from glucose-phosphate and ATP. It is a tetrameric protein consisting of two small and two large subunits. The small subunits have a catalytic function, while the large subunits regulate the enzyme activity. Cyperus esculentus (yellow nutsedge) is a perennial C4 plant grown from rhizomes and tubers. Previous studies on yellow nutsedge have mostly focused on the morphology and cultivation of tubers, their application in food, and biochemical analyses of the tubers. In this study, the gene encoding the ADPGlcPPase small subunit (CeAGPS) in yellow nutsedge was cloned and characterized. The full-length CeAGPS cDNA sequence contained an 81-bp 5-untranslated region (UTR), a 188-bp 3-UTR, and a 1539-bp open reading frame encoding 512-amino acid residues. The genomic sequence of CeAGPS comprises a nine exon-eight intron structure similar to the previously reported cotton and Arabidopsis thaliana AGPS genes. The deduced translation product of the CeAGPS gene contained a well-conserved catalytic domain and regulatory elements typical of plant AGPS. Reverse transcriptase polymerase chain reaction amplification of the target gene in various plant parts using gene-specific primers indicated that the expression of CeAGPS was most abundant in the tuber, and relatively lower in nutsedge roots.


Tong C.,Key Laboratory of Biology and Genetic Improvement of Oil Crops | Tong C.,Chinese Academy of Agricultural Sciences | Wang X.,Key Laboratory of Biology and Genetic Improvement of Horticultural Crops | Wang X.,Chinese Academy of Agricultural Sciences | And 13 more authors.
BMC Genomics | Year: 2013

Background: The species Brassica rapa (2n=20, AA) is an important vegetable and oilseed crop, and serves as an excellent model for genomic and evolutionary research in Brassica species. With the availability of whole genome sequence of B. rapa, it is essential to further determine the activity of all functional elements of the B. rapa genome and explore the transcriptome on a genome-wide scale. Here, RNA-seq data was employed to provide a genome-wide transcriptional landscape and characterization of the annotated and novel transcripts and alternative splicing events across tissues. Results: RNA-seq reads were generated using the Illumina platform from six different tissues (root, stem, leaf, flower, silique and callus) of the B. rapa accession Chiifu-401-42, the same line used for whole genome sequencing. First, these data detected the widespread transcription of the B. rapa genome, leading to the identification of numerous novel transcripts and definition of 5'/3' UTRs of known genes. Second, 78.8% of the total annotated genes were detected as expressed and 45.8% were constitutively expressed across all tissues. We further defined several groups of genes: housekeeping genes, tissue-specific expressed genes and co-expressed genes across tissues, which will serve as a valuable repository for future crop functional genomics research. Third, alternative splicing (AS) is estimated to occur in more than 29.4% of intron-containing B. rapa genes, and 65% of them were commonly detected in more than two tissues. Interestingly, genes with high rate of AS were over-represented in GO categories relating to transcriptional regulation and signal transduction, suggesting potential importance of AS for playing regulatory role in these genes. Further, we observed that intron retention (IR) is predominant in the AS events and seems to preferentially occurred in genes with short introns. Conclusions: The high-resolution RNA-seq analysis provides a global transcriptional landscape as a complement to the B. rapa genome sequence, which will advance our understanding of the dynamics and complexity of the B. rapa transcriptome. The atlas of gene expression in different tissues will be useful for accelerating research on functional genomics and genome evolution in Brassica species. © 2013 Tong et al.; licensee BioMed Central Ltd.


Wang L.,Chinese Academy of Agricultural Sciences | Wang L.,Key Laboratory of Biology and Genetic Improvement of Oil Crops | Zhang Y.,Chinese Academy of Agricultural Sciences | Zhang Y.,Key Laboratory of Biology and Genetic Improvement of Oil Crops | And 6 more authors.
American Journal of Botany | Year: 2012

• Premise of the study: Polymorphic simple sequence repeat markers from transcript sequences (cDNA-simple sequence repeat [SSR]) were developed for the edible oil crop Sesamum indicum to facilitate the genetic study of this species. • Methods and Results: We found 7702 SSR loci in the 60 960 unigenes, and 1550 primer pairs were designed and synthesized. In total, 59 primer pairs showed polymorphism within 36 individuals; the number of alleles per locus ranged from two to four, and the expected and observed heterozygosity ranged from 0.05 to 0.74 and 0 to 0.30, respectively. • Conclusions: These polymorphic markers will greatly facilitate studies of the genetic structure of S. indicum populations as well as the identification and conservation of the species. © 2012 Botanical Society of America.

Loading Key Laboratory of Biology and Genetic Improvement of Oil Crops collaborators
Loading Key Laboratory of Biology and Genetic Improvement of Oil Crops collaborators