Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region

Chengdu, China

Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region

Chengdu, China
SEARCH FILTERS
Time filter
Source Type

Farkhari M.,University of Tehran | Farkhari M.,University of Agriculture and Natural Resources Ramin | Farkhari M.,International Maize and Wheat Improvement Center | Krivanek A.,International Maize and Wheat Improvement Center | And 9 more authors.
Plant Breeding | Year: 2013

Large-scale selective genotyping and high-throughput analysis are two important strategies for low-cost and high-effective genetic mapping. In this study, selective genotyping was applied to four maize F2 populations. Thirty plants were selected from each of the two tails of the original F2 populations to represent extreme resistant and susceptible plants to root lodging, and genotyped individually with 1536 single nucleotide polymorphisms (SNPs). A quantitative trait locus (QTL) was declared when at least three closely linked SNPs showed significant allele frequency difference between the two tails. Nine QTL were identified for root lodging across the four populations, which were located on chromosomes 2, 4, 5, 7, 8 and 10 and one of them was shared between two populations. A total of 20 segregation distortion regions (SDRs) were identified across the four populations, one of which was co-localized with a QTL on chromosome 4. The tightly linked SNPs identified in this study can be used for marker-assisted selection for root lodging. Selective genotyping, when combined with pooled DNA analysis, can be used to develop strategies for high-throughput genetic mapping for all crops. © 2012 Blackwell Verlag GmbH.


Xu J.,Sichuan Agricultural University | Xu J.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region | Liu Y.,Sichuan Agricultural University | Liu J.,Sichuan Agricultural University | And 15 more authors.
Journal of Integrative Plant Biology | Year: 2012

The control of flowering is not only important for reproduction, but also plays a key role in the processes of domestication and adaptation. To reveal the genetic architecture for flowering time and photoperiod sensitivity, a comprehensive evaluation of the relevant literature was performed and followed by meta analysis. A total of 25 synthetic consensus quantitative trait loci (QTL) and four hot-spot genomic regions were identified for photoperiod sensitivity including 11 genes related to photoperiod response or flower morphogenesis and development. Besides, a comparative analysis of the QTL for flowering time and photoperiod sensitivity highlighted the regions containing shared and unique QTL for the two traits. Candidate genes associated with maize flowering were identified through integrated analysis of the homologous genes for flowering time in plants and the consensus QTL regions for photoperiod sensitivity in maize (Zea mays L.). Our results suggest that the combination of literature review, meta-analysis and homologous blast is an efficient approach to identify new candidate genes and create a global view of the genetic architecture for maize photoperiodic flowering. Sequences of candidate genes can be used to develop molecular markers for various models of marker-assisted selection, such as marker-assisted recurrent selection and genomic selection that can contribute significantly to crop environmental adaptation. © 2012 Institute of Botany, Chinese Academy of Sciences.


Xu J.,Sichuan Agricultural University | Xu J.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region | Liu L.,Sichuan Agricultural University | Liu L.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region | And 19 more authors.
DNA Research | Year: 2013

Simple sequence repeats (SSRs) have been widely used in maize genetics and breeding, because they are co-dominant, easy to score, and highly abundant. In this study, we used whole-genome sequences from 16 maize inbreds and 1 wild relative to determine SSR abundance and to develop a set of high-density polymorphic SSR markers. A total of 264 658 SSRs were identified across the 17 genomes, with an average of 135 693 SSRs per genome. Marker density was one SSR every of 15.48 kb. (C/G)n, (AT)n, (CAG/CTG)n, and (AAAT/ATTT)n were the most frequent motifs for mono, di-, tri-, and tetra-nucleotide SSRs, respectively. SSRs were most abundant in intergenic region and least frequent in untranslated regions, as revealed by comparing SSR distributions of three representative resequenced genomes. Comparing SSR sequences and e-polymerase chain reaction analysis among the 17 tested genomes created a new database, including 111 887 SSRs, that could be develop as polymorphic markers in silico. Among these markers, 58.00, 26.09, 7.20, 3.00, 3.93, and 1.78% of them had mono, di-, tri-, tetra-, penta-, and hexa-nucleotide motifs, respectively. Polymorphic information content for 35 573 polymorphic SSRs out of 111 887 loci varied from 0.05 to 0.83, with an average of 0.31 in the 17 tested genomes. Experimental validation of polymorphic SSR markers showed that over 70% of the primer pairs could generate the target bands with length polymorphism, and these markers would be very powerful when they are used for genetic populations derived from various types of maize germplasms that were sampled for this study. © The Author 2013. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


Qu J.,Sichuan Agricultural University | Liu J.,Sichuan Agricultural University | Liu J.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region
BMC Research Notes | Year: 2013

Abstract. Background: Maize (Zea mays ssp. mays L.), as the most important plant for staple food of several million people, animal feed and bioenergy productions, is widely cultivated around the world. Simple sequence repeats (SSRs) are widely used as molecular markers in maize genetics and breeding, but only two thousands pairs of SSRs have been published currently, which hardly satisfies for the increasing needs of geneticists and breeders. Furthermore, the increasing studies have revealed that SSRs also play a vital role in functional regulation and evolution. It is fortunate that the development of sequencing technology and bio-software provides the basis for characterization and development of SSRs in maize. Results: In this study, MISA was applied to identify overall 179,681 SSRs in maize reference genome B73, with an average distance of 11.46 Kbp. Their distributions within the genome in different regions were non-random, and the density followed in a descending order of UTR, promotor, intron, intergenic and CDS. Meanwhile, 82,694 (46.02%) SSRs with unique flanking sequences were selected, and then applied to analyze the polymorphism of next-generation sequencing data from 345 maize inbred lines and data from maize reference genome B73. There were 58,946 SSRs with length information results in ten or more than ten genomes, accounting for 71.28% of SSRs with unique flanking sequences, while 55,621 SSRs had polymorphism, with an average PIC value of 0.498. 250 pairs of SSR primers in different genomic regions covering all maize chromosomes were randomly chosen for the experimental validation, with an average PIC value of 0.63 in 11 elite maize inbred lines. Conclusions: Our work provided insight into the non-random distribution spatterns and compositions of SSRs in different regions of maize genome, and also developed more polymorphic SSR markers using next-generation sequencing reads. The genome-wide SSRs polymorphism markers could be useful for genetic analysis and marker-assisted selection in breeding practice, and it was also proved to be high efficient for molecular marker development via next-generation sequencing reads. © 2013 Qu and Liu; licensee BioMed Central Ltd.


Liu J.,Sichuan Agricultural University | Liu J.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region | Li J.,Sichuan Agricultural University | Li J.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region | And 3 more authors.
Rice | Year: 2015

Background: Next-generation sequencing technologies enable the re-sequencing of a large number of genomes and provide an unprecedented opportunity to discover numerous DNA polymorphisms throughout the genome of a species. As the second most abundant form of genetic variation, InDels, with characteristics of co-dominance, multiple alleles and high stability and density and that are easy to genotype, have received an increasing amount attention. Results: In this work, a total of 2,329,544 InDels were identified in 1767 rice genomes; these InDels were dispersed across all 12 rice chromosomes, with one InDel marker found, on average, every 160.22 bp. There were 162,380 highly polymorphic InDels with a polymorphism information content (PIC) ≥ 0.5, contributing 1.81 % to the unique primer set. Of these highly polymorphic InDels, we also selected InDels with major allele differences (the size difference between the most and second most frequent alleles) ≥ 3 bp or 8 bp for primer design, which provided a more flexible choice for researchers. Finally, we experimentally validated 100 highly polymorphic InDels for accuracy and polymorphism. The PCR results showed that the accuracy of the InDel markers was 95.70 %, while the average PIC value was 0.56, with a range of 0.19 to 0.78; the average allele number was 3.02, with a range of 2 to 5. Conclusions: Our genome-wide and easily used InDel markers with high polymorphism and density in both cultivated and wild rice will undoubtedly have practical implications in rice marker-assisted breeding and will also meet the need of fine-scale genetic mapping in map-based rice gene cloning. © 2015, Liu et al.


Xu J.,Sichuan Agricultural University | Xu J.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region | Yuan Y.,Sichuan Agricultural University | Yuan Y.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region | And 25 more authors.
BMC Plant Biology | Year: 2014

Background: Drought stress is one of the major limiting factors for maize production. With the availability of maize B73 reference genome and whole-genome resequencing of 15 maize inbreds, common variants (CV) and clustering analyses were applied to identify non-synonymous SNPs (nsSNPs) and corresponding candidate genes for drought tolerance. Results: A total of 524 nsSNPs that were associated with 271 candidate genes involved in plant hormone regulation, carbohydrate and sugar metabolism, signaling molecules regulation, redox reaction and acclimation of photosynthesis to environment were detected by CV and cluster analyses. Most of the nsSNPs identified were clustered in bin 1.07 region that harbored six previously reported QTL with relatively high phenotypic variation explained for drought tolerance. Genes Ontology (GO) analysis of candidate genes revealed that there were 35 GO terms related to biotic stimulus and membrane-bounded organelle, showing significant differences between the candidate genes and the reference B73 background. Changes of expression level in these candidate genes for drought tolerance were detected using RNA sequencing for fertilized ovary, basal leaf meristem tissue and roots collected under drought stressed and well-watered conditions. The results indicated that 70% of candidate genes showed significantly expression changes under two water treatments and our strategies for mining candidate genes are feasible and relatively efficient. Conclusions: Our results successfully revealed candidate nsSNPs and associated genes for drought tolerance by comparative sequence analysis of 16 maize inbred lines. Both methods we applied were proved to be efficient for identifying candidate genes for complex traits through the next-generation sequencing technologies (NGS). These selected genes will not only facilitate understanding of genetic basis of drought stress response, but also accelerate genetic improvement through marker-assisted selection in maize. © 2014 Xu et al.; licensee BioMed Central Ltd.


Shen Y.,Sichuan Agricultural University | Shen Y.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region | Zhang Y.,Sichuan Agricultural University | Zhang Y.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region | And 16 more authors.
Physiologia Plantarum | Year: 2013

Lead (Pb) has become one of the most abundant heavy metal pollutants of the environment. With its large biomass, maize could be an important object for studying the phytoremediation of Pb-contaminated soil. In our previous research, we screened 19 inbred lines of maize for Pb concentration, and line 178 was identified to be a hyperaccumulator for Pb in both the roots and aboveground parts. To identify important genes and metabolic pathways related to Pb accumulation and tolerance, line 178 was underwent genome expression profile under Pb stress and a control (CK). A total of approximately 11 million cDNA tags were sequenced and 4 665 539 and 4 936 038 clean tags were obtained from the libraries of the test and CK, respectively. In comparison to CK, 2379 and 1832 genes were identified up- or downregulated, respectively, more than fivefolds under Pb stress. Interestingly, all the genes were related to cellular processes and signaling, information storage and processing or metabolism functions. Particularly, the genes involved in posttranslational modification, protein turnover and chaperones; signal transduction, carbohydrate transport and metabolism; and lipid transport and metabolism significantly changed under the treatment. In addition, seven pathways including ribosome, photosynthesis, and carbon fixation were affected significantly, with 118, 12, 34, 21, 18, 72 and 43 differentially expressed genes involved. The significant upregulation of the ribosome pathway may reveal an important secret for Pb tolerance of line 178. And the sharp increase of laccase transcripts and metal ion transporters were suggested to account in part for Pb hyperaccumulation in the line. © Physiologia Plantarum 2012.


Wu Z.,Zhongkai University of Agriculture and Engineering | Cheng J.,South China Agricultural University | Qin C.,Zunyi Institute of Agricultural science | Qin C.,Sichuan Agricultural University | And 4 more authors.
International Journal of Molecular Sciences | Year: 2013

Cytoplasmic male sterility (CMS), widely used in the production of hybrid seeds, is a maternally inherited trait resulting in a failure to produce functional pollen. In order to identify some specific proteins associated with CMS in pepper, two-dimensional gel electrophoresis (2-DE) was applied to proteomic analysis of anthers/buds between a CMS line (designated NA3) and its maintainer (designated NB3) in Capsicum annuum L. Thirty-three spots showed more than 1.5-fold in either CMS or its maintainer. Based on mass spectrometry, 27 spots representing 23 distinct proteins in these 33 spots were identified. Proteins down-regulated in CMS anthers/buds includes ATP synthase D chain, formate dehydrogenase, alpha-mannosidas, RuBisCO large subunit-binding protein subunit beta, chloroplast manganese stabilizing protein-II, glutathione S-transferase, adenosine kinase isoform 1T-like protein, putative DNA repair protein RAD23-4, putative caffeoyl-CoA 3-O-methyltransferase, glutamine synthetase (GS), annexin Cap32, glutelin, allene oxide cyclase, etc. In CMS anthers/buds, polyphenol oxidase, ATP synthase subunit beta, and actin are up-regulated. It was predicted that male sterility in NA3 might be related to energy metabolism turbulence, excessive ethylene synthesis, and suffocation of starch synthesis. The present study lays a foundation for future investigations of gene functions associated with pollen development and cytoplasmic male sterility, and explores the molecular mechanism of CMS in pepper. © 2013 by the authors; licensee MDPI, Basel, Switzerland.


Yang C.,Sichuan Agricultural University | Yang C.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region | Liu J.,Sichuan Agricultural University | Liu J.,Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region | And 2 more authors.
Genetics and Molecular Research | Year: 2015

Ear row number (ERN) is not only a key trait involved in maize (Zea mays L.) evolution but is also an important component that is directly related to grain yield. In this study, quantitative trait loci (QTLs) for ERN were detected across two F2 populations that were derived from a same cross between B73 with 16 rows (N = 233) and SICAU1212 with four rows (N = 231). As a result, 33 QTLs were associated with 12 agronomic traits: three plant traits, four ear-related traits, and five kernel-related traits. The total phenotypic variation explained by the QTLs for each trait ranged from 8.60 to 72.67%, and four QTLs were identified for ERN in the two populations. Each QTL explained between 6.78 and 36.76% of the ERN variation. Notably, three of the four QTLs (qERN2-1, qERN4-2, and qERN8-1) were associated with ERN, and qERN8-1 simultaneously influenced grain yield, plant diameter, ear diameter, and kernel length. In addition, only one significant epistatic interaction was detected in all 33 QTLs. This study should provide a foundation for further fine-mapping and map-based cloning of these consistent QTLs, and for controlling maize ERN by marker-assisted breeding. © FUNPEC-RP.


PubMed | Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region and Southwest Hospital
Type: Journal Article | Journal: Genetics and molecular research : GMR | Year: 2016

Lead (Pb), a heavy metal, has become a crucial pollutant in soil and water, causing not only permanent and irreversible health problems, but also substantial reduction in crop yields. In this study, we conducted proteome analysis of the roots of the non-hyperaccumulator inbred maize line 9782 at four developmental stages (0, 12, 24, and 48 h) under Pb pollution using isobaric tags for relative and absolute quantification technology. A total of 252, 72 and 116 proteins were differentially expressed between M12 (after 12-h Pb treatment) and CK (water-mocked treatment), M24 (after 24-h Pb treatment) and CK, and M48 (after 48-h Pb treatment) and CK, respectively. In addition, 14 differentially expressed proteins were common within each comparison group. Moreover, Cluster of Orthologous Groups enrichment analysis revealed predominance of the proteins involved in posttranslational modification, protein turnover, and chaperones. Additionally, the changes in protein profiles showed a lower concordance with corresponding alterations in transcript levels, indicating important roles for transcriptional and posttranscriptional regulation in the response of maize roots to Pb pollution. Furthermore, enriched functional categories between the successive comparisons showed that the proteins in functional categories of stress, redox, signaling, and transport were highly up-regulated, while those in the functional categories of nucleotide metabolism, amino acid metabolism, RNA, and protein metabolism were down-regulated. This information will help in furthering our understanding of the detailed mechanisms of plant responses to heavy metal stress by combining protein and mRNA profiles.

Loading Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region collaborators
Loading Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region collaborators