Entity

Time filter

Source Type


Yang Y.,Northwest Normal University | Yang Y.,Key Laboratory of Polymer Materials of Gansu Province | Li Y.,Northwest Normal University | Liu H.,Northwest Normal University | And 4 more authors.
Journal of Chromatography A | Year: 2014

In the present study, a novel approach for rapid electrodeposition on an etched stainless steel (SS) wire followed by self-assembled monolayer (SAM) was proposed for the fabrication of solid-phase microextraction (SPME) fiber. The etched SS wire offers a rough surface structure for subsequent electrochemical deposition of gold nanoparticles (AuNPs). As a result, uniform AuNPs coating was tightly attached to the etched SS wire substrate. After SAM of 1,8-octanedithiol onto AuNPs coating via Au-S bonding, a unique floccular structure with extremely large surface area was obtained for the fabricated fiber. The mercaptooctyl groups modified AuNPs coated etched SS fiber (C8-S-AuNPs/SS) was then assessed for SPME of phthalate esters (PAEs), polychlorinated biphenyls (PCBs), chlorophenols (CPs), ultraviolet (UV) filters, polycyclic aromatic hydrocarbons (PAHs) and substituted anilines coupled to high-performance liquid chromatography with UV detection. This fiber exhibits higher extraction capability and better selectivity for some PCBs, CPs, UV filters and PAHs. Extraction conditions were investigated and optimized for SPME performance of UV filters. Under the optimized conditions, the developed method showed good linearity between 0.10 and 400μgL-1 with corresponding coefficients in the range of 0.9989-0.9998. The limits of detection ranged from 0.025 to 0.056μgL-1. The relative standard deviation for fiber-to-fiber reproducibility of five fabricated fibers was less than 9.4%. The developed method was successfully applied to the preconcentration and determination of trace UV filters from environmental water samples. Furthermore the fabrication of the C8-S-AuNPs/SS fiber can be performed in a highly reproducible manner. This fabricated fiber exhibits good stability and long lifetime, and could be a potential alternative for the conventional fused silica fiber. © 2014 Elsevier B.V. Source


Li Y.,Northwest Normal University | Zhang M.,Northwest Normal University | Yang Y.,Northwest Normal University | Wang X.,Northwest Normal University | And 3 more authors.
Journal of Chromatography A | Year: 2014

A novel TiO2-nanosheets coated fiber for solid-phase microextraction (SPME) was fabricated by anodization of Ti wire substrates in ethylene glycol with concentrated NH4F. The in situ fabricated TiO2-nanosheets were densely embedded into Ti substrates with about 1μm long, 300nm wide and 80nm thick. The as-fabricated TiO2-nanosheets coating was employed to extract polycyclic aromatic hydrocarbons, phthalates and ultraviolet (UV) filters in combination with high performance liquid chromatography-UV detection (HPLC-UV). It was found that the TiO2-nanosheets coating exhibited high extraction capability and good selectivity for some UV filters frequently used in cosmetic sunscreen formulations. The main parameters affecting extraction performance were investigated and optimized. Under the optimized conditions, the calibration graphs were linear in the range of 0.1-400μgL-1. The limits of detection of the proposed method were between 0.026μgL-1 and 0.089μgL-1 (S/N=3). The single fiber repeatability varied from 4.50% to 8.76% and the fiber-to-fiber reproducibility ranged from 7.75% to 9.64% for the extraction of spiked water with 50μgL-1 UV filters (n=5). The SPME-HPLC-UV method was successfully established for the selective preconcentration and sensitive detection of target UV filters from real environmental water samples. Recovery of UV filters spiked at 10μgL-1 and 25μgL-1 ranged from 88.8% to 107% and the relative standard deviations were less than 9.8%. Furthermore the in situ growth of the TiO2-nanosheets coating was performed in a highly reproducible manner and the TiO2-nanosheets coated fiber has high mechanical strength, good stability and long service life. © 2014 Elsevier B.V. Source


Song W.,Northwest Normal University | Guo M.,Northwest Normal University | Zhang Y.,Northwest Normal University | Zhang M.,Northwest Normal University | And 4 more authors.
Journal of Chromatography A | Year: 2015

A novel zinc-zinc oxide (Zn-ZnO) nanosheets coating was directly fabricated on an etched stainless steel wire substrate as solid-phase microextraction (SPME) fiber via previous electrodeposition of robust Zn coating. The scanning electron micrograph of the Zn-ZnO nanosheets coated fiber exhibits a flower-like nanostructure with high surface area. The SPME performance of as-fabricated fiber was investigated for the concentration and determination of polycyclic aromatic hydrocarbons, phthalates and ultraviolet (UV) filters coupled to high performance liquid chromatography with UV detection (HPLC-UV). It was found that the Zn-ZnO nanosheets coating exhibited high extraction capability, good selectivity and rapid mass transfer for some UV filters. The main parameters affecting extraction performance were investigated and optimized. Under the optimized conditions, the calibration graphs were linear over the range of 0.1-200μgL-1. The limits of detection of the proposed method were 0.052-0.084μgL-1 (S/N=3). The single fiber repeatability varied from 5.18% to 7.56% and the fiber-to-fiber reproducibility ranged from 6.74% to 8.83% for the extraction of spiked water with 50μgL-1 UV filters (n=5). The established SPME-HPLC-UV method was successfully applied to the selective concentration and sensitive determination of target UV filters from real environmental water samples with recoveries from 85.8% to 105% at the spiking level of 10μgL-1 and 30μgL-1. The relative standard deviations were below 9.7%. © 2015. Source

Discover hidden collaborations