Time filter

Source Type

Zhao R.-Y.,Chinese Academy of Sciences | Zhao R.-Y.,Key Laboratory of Biosynthesis of Natural Products | Zhao R.-Y.,Key Laboratory of Bioactive Substances and Resources Utilization | Xiao W.,Chinese Academy of Sciences | And 11 more authors.
Journal of Industrial Microbiology and Biotechnology | Year: 2010

The gene encoding squalene synthase (GfSQS) was cloned from Fusarium fujikuroi (Gibberella fujikuroi MP-C) and characterized. The cloned genomic DNA is 3,267 bp in length, including the 5'-untranslated region (UTR), 3'-UTR, four exons, and three introns. A noncanonical splice-site (CA-GG, or GC-AG) was found at the first intron. The open reading frame of the gene is 1,389 bp in length, corresponding to a predicted polypeptide of 462 amino acid residues with a MW 53.4 kDa. The predicted GfSQS shares at least four conserved regions involved in the enzymatic activity with the SQSs of varied species. The recombinant protein was expressed in E. coli and detected by SDS-PAGE and western blot. GC-MS analysis showed that the wild-type GfSQS could catalyze the reaction from farnesyl diphosphate (FPP) to squalene, while the mutant mGfSQS (D82G) lost total activity, supporting the prediction that the aspartate-rich motif (DTXED) in the region I of SQS is essential for binding of the diphosphate substrate. © 2010 Society for Industrial Microbiology.

Discover hidden collaborations