Time filter

Source Type

Xue X.,Huazhong Agricultural University | Xue X.,Key Laboratory of Arable Land Conservation of Middle and Lower Reaches of Yangtze River | Lu J.,Huazhong Agricultural University | Lu J.,Key Laboratory of Arable Land Conservation of Middle and Lower Reaches of Yangtze River | And 10 more authors.
Soil Science and Plant Nutrition | Year: 2016

Plant tissue testing is used as a guide for rice (Oryza sativa L.) fertilization and has been extensively used in the diagnosis of potassium (K) deficiency. However, little attention has been paid to the variation in the diagnostic index of K status in different parts of the rice plant. Here, we assessed the feasibility by testing K concentrations of whole plants, leaf blades and leaf sheaths to develop a suitable diagnostic index of plant K status and yield level in rice under different K application rates. The results showed that this research could satisfy the requirements of K status diagnosis, based on the quadratic-plus-plateau relationship between K application rates and grain yield. The K concentrations of the leaf blades and leaf sheaths on the main stem showed differences based on position. Leaf blade K concentrations significantly decreased from the top of the plant to the bottom in the effective tillering and jointing stages. Conversely, K concentrations in the lower leaf blades exceeded those in the upper leaf blades in the booting and full heading stages. K concentrations in the leaf sheath were significantly reduced with declining leaf position except during the jointing stage under high K treatments. Leaf sheath/leaf blade K concentration ratios increased significantly more in lower tissues than in upper plant tissues. Correlation analysis showed that the K concentrations of all sampled plant tissues were positively correlated to plant K uptake and grain yield. However, K concentrations of the whole plant were more useful as a diagnostic index at the effective tillering stage than at other growth stages. Leaf sheaths in lower positions were preferable to upper leaf sheaths and all leaf blades for evaluating plant K status, although their K concentrations were greatly influenced by plant growth stage. Furthermore, this study demonstrated that the ratio between the K concentrations of the first and fourth leaf blades (LBKR1/4) was grouped into significantly exponential curves (P < 0.01) to describe the relationship between plant K uptake and relative grain yield. Thus, LBKR1/4 could be an ideal indicator of rice plant K status and yield level, as it eliminated the effects of plant growth stage. © 2015 Japanese Society of Soil Science and Plant Nutrition. Source

Discover hidden collaborations