Time filter

Source Type

Deng H.,Sichuan Agricultural University | Kuang P.,Sichuan Agricultural University | Cui H.,Sichuan Agricultural University | Cui H.,Key Laboratory of Animal Diseases | And 12 more authors.
Aging | Year: 2016

At present, there are no reports on the relationship between fluoride-induced apoptosis and endoplasmic reticulum (ER) stress (ER stress) in the spleen of human and animals in vivo and in vitro. Therefore, the aim of this study was to define sodium fluoride (NaF)-induced apoptosis mediated by ER stress in the spleen of mice in vivo and in vitro. Apoptosis and expression levels of the ER stress-related proteins were detected by flow cytometry and western blot, respectively. The results showed that NaF treatment increased lymphocytes apoptosis, which was consistent with NaF-caused ER Stress. NaF-caused ER stress was characterized by upregulating protein expression levels of glucose-regulated protein 78 (BiP) and glucose-regulated protein 94 (GRP94), and by activating unfolded protein response (UPR). The signaling pathway of ER stress-associated apoptosis was activated by up-regulating protein expression levels of cleaved cysteine aspartate specific protease-12 (cleaved caspase-12), growth arrest and DNA damage-inducible gene 153 (Gadd153/CHOP) and phosphorylation of JUN N-terminal kinase (p-JNK). Additionally, our in vitro study found that apoptotic rate was decreased with remarkable down-regulation of the cleaved caspase-12, CHOP, p-JNK after ER stress was inhibited by 4-Phenylbutyric acid (4-PBA) treatment. In conclusion, NaF-induced apoptosis may mediated by ER stress in the spleen.

Xie W.,Sichuan Agricultural University | Cheng A.,Sichuan Agricultural University | Cheng A.,Key Laboratory of Animal Diseases | Wang M.,Key Laboratory of Animal Diseases | And 3 more authors.
Molecular Biology Reports | Year: 2010

Using a combination of bioinformation analysis and Dot blot technique, a gene, designated hereafter as the duck enteritis virus (DEV) UL31 gene (GenBank accession number EF643559), was identified from the DEV CHv genomic library. Then, the UL31 gene was cloned and sequenced, which was composed of 933 nucleotides encoding 310 amino acids. Multiple sequence alignment suggested that the UL31 gene was highly conserved in Alphaherpesvirinae and similar to the other herpesviral UL31. Phylogenetic analysis showed that the gene had a close evolutionary relationship with the avian herperviruses, and DEV should be placed into a single cluster within the subfamily Alphaherpesvirinae. Antigen prediction indicated that several potential B-cell epitopes sites located in the UL31 protein. To further study, the UL31 gene was cloned into a pET prokaryotic expression vector and transformed into Escherichia coli BL21 (DE3). A 55 kDa fusion protein was induced by the further culture at 37°C after addition of 0.8 mM IPTG. Polyclonal antibody raised against the recombinant UL31 from rabbit was prepared. A protein about 55 kDa that reacted with the antibody was detected in immunoblots of bacterial proteins, suggesting that the 55 kDa protein was the product of the UL31 gene. Immunofluorescence analysis revealed that the protein was localized in very fine punctate forms in the nuclei of infected cells. Our results may provide some insight for further research about the gene and also enrich the database of herpesvirus. © Springer Science+Business Media B.V. 2009.

Du L.,Jiangsu Academy of Agricultural Sciences | Du L.,Key Laboratory of Animal Diseases | Du L.,National Center for Engineering Research of Veterinary Bio products | Du L.,Jiangsu Electric Power Company | And 29 more authors.
Archives of Virology | Year: 2015

Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease of pigs. Safer and more effective vaccines are urgently needed. In this study, a synthetic ORF5 gene of porcine reproductive and respiratory syndrome virus (PRRSV) was adsorbed onto poly(D, L-lactide-co-glycolide)/polyethylenimine (PLGA/PEI) nanoparticles. We prepared a PLGA-nanoparticle-adsorbed PRRSV DNA vaccine and a PEI-DNA complex. The results showed that these model vaccines could significantly enhance humoral and cellular immune responses when compared with the responses induced by pcDNA3.1-SynORF5, a plasmid construct for expression of PRRSV ORF5. PLGA-branched PEI nanoparticles induced the most efficient immune response. The delivery system and adjuvant provide new models for the development of vaccines against PRRSV. © 2015, Springer-Verlag Wien.

Du L.,Nanjing Agricultural University | Du L.,Jiangsu Academy of Agricultural Sciences | Du L.,Key Laboratory of Animal Diseases | Du L.,National Center for Engineering Research of Veterinary Bio Products | And 11 more authors.
BioMed Research International | Year: 2013

Porcine reproductive and respiratory syndrome virus (PRRSV) has been mainly responsible for the catastrophic economic losses in pig industry worldwide. The commercial vaccines only provide a limited protection against PRRSV infection. Thus, the focus and direction is to develop safer and more effective vaccines in the research field of PRRS. The immune modulators are being considered to enhance the effectiveness of PRRSV vaccines. IFN-λ1 belongs to type III interferon, a new interferon family. IFN-λ1 is an important cytokine with multiple functions in innate and acquired immunity. In this study, porcine IFN-λ1 (PoIFN-λ1) was evaluated for its adjuvant effects on the immunity of a DNA vaccine carrying the GP5 gene of PRRSV. Groups of mice were immunized twice at 2-week interval with 100 μg of the plasmid DNA vaccine pcDNA3.1-SynORF5, pcDNA3.1-PoIFN-λ1-SynORF5, and the blank vector pcDNA3.1, respectively. The results showed that pcDNA3.1-PoIFN-λ1-SynORF5 can significantly enhance GP5-specific ELISA antibody, PRRSV-specific neutralizing antibody, IFN-γ level, and lymphocyte proliferation ratherthan the responses induced by pcDNA3.1-SynORF5. Therefore, type III interferon PoIFN-λ1 could enhance the immune responses of DNA vaccine of PRRSV, highlighting the potential value of PoIFN-λ1 as a molecular adjuvant in the prevention of PRRSV infection. © 2013 Luping Du et al.

Loading Key Laboratory of Animal Diseases collaborators
Loading Key Laboratory of Animal Diseases collaborators