Time filter

Source Type

Shi Q.-Q.,Yangzhou University | Shi Q.-Q.,Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province | Sun M.,Yangzhou University | Sun M.,Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province | And 12 more authors.
Animal Reproduction Science | Year: 2014

Differentiation of germ cells from embryonic stem cells in vitro could have great application for treating infertility and provide an excellent model for uncovering molecular mechanisms of germline generation. In this study, we aim to screen the suitable inducers that may prove the efficiency of driving chicken embryonic stem cells (ES cells) toward germ cells. The male ES cells were separeted into different groups: single retinoic acid (RA) treatment, co-cultured with sertoli cell feeder with RA induction, cultured on matrix proteins (fibronectin, laminin and collagen) with RA treatment, cultured on fibronectin with sertoli cell feeder and RA induction, and single bone morphogenetic protein 4 (BMP4) treatment. Quantitative RT-PCR and immunoourescence were performed to characterize the ES cells differentiation process. The results showed that spermatogonial stem cells (SSCs)-like were not detected in single RA and RA with collagen groups, but were observed in the other groups. The expression of ES specific genes (Nanog and Sox2) was decreased while SSCs marker genes (Dazl, Stra8, integrin α6, integrinβ1 and C-kit) was remarkably increased. The multiple comparsion results showed that the expression of SSCs marker genes in RA with sertoli cells group was significantly higher than the other groups(P< 0.05). Collectively, our results suggested that chicken ES cells possess the potency to differentiate into SSCs-like cells in vitro through RA, matrix proteins, sertoli cells and BMP4 induction, of which co-cultured with sertoli cell feeder with RA induction was proved to be the best. © 2014 Elsevier B.V.


Zhang Y.,Yangzhou University | Zhang Y.,Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province | Zuo Q.,Yangzhou University | Zuo Q.,Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province | And 17 more authors.
PLoS ONE | Year: 2015

Stra8 encodes stimulated by retinoic acid gene 8, a protein that is important for initiation of meiosis in mammals and birds. This study was aimed at identifying the active control area of chicken STRA8 gene core promoter, to screen optimum inducers of the STRA8 gene, thus to enhance the differentiation of embryonic stem cells (ESCs) into spermatogonial stem cells. Fragments of chicken STRA8 gene promoter were cloned into fluorescent reporter plasmids and transfected into DF-1 cells. Then Dual-Luciferase1Reporter Assay System was used to identify the activity of the STRA8 gene under different inducers. Our studies showed that the promoter fragment -1055 bp to +54 bp of Suqin chicken Stra8 revealed the strongest activity. The dual-luciferase1reporter showed that Tamibarotene (Am80) and TrichostatinA (TSA) could significantly enhance STRA8 transcription. The in vitro inductive culture of chicken ESCs demonstrated that spermatogonial stem cells (SSC)-like cells appeared and Integrinβ1 protein was expressed on day 10, indicating that Am80 and TSA can promote ESCs differentiation into SSCs via regulation of Stra8. © 2015 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province collaborators
Loading Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province collaborators