Time filter

Source Type

Wu Z.,Nanjing Agricultural University | Wu Z.,Key Laboratory of Animal Bacteriology | Wu Z.,OIE Reference Laboratory for Swine Streptococcosis | Wu C.,BGI Shenzhen | And 24 more authors.
RNA | Year: 2014

Streptococcus suis (SS) is an important pathogen of pigs, and it is also recognized as a zoonotic agent for humans. SS infection may result in septicemia or meningitis in the host. However, little is known about genes that contribute to the virulence process and survival within host blood or cerebrospinal fluid (CSF). Small RNAs (sRNA) have emerged as key regulators of virulence in several bacteria, but they have not been investigated in SS. Here, using a differential RNA-sequencing approach and RNAs from SS strain P1/7 grown in rich medium, pig blood, or CSF, we present the SS genome-wide map of 793 transcriptional start sites and 370 operons. In addition to identifying 29 sRNAs, we show that five sRNA deletion mutants attenuate SS virulence in a zebrafish infection model. Homology searches revealed that 10 sRNAs were predicted to be present in other pathogenic Streptococcus species. Compared with wild-type strain P1/7, sRNAs rss03, rss05, and rss06 deletion mutants were significantly more sensitive to killing by pig blood. It is possible that rss06 contributes to SS virulence by indirectly activating expression of SSU0308, a virulence gene encoding a zinc-binding lipoprotein. In blood, genes involved in the synthesis of capsular polysaccharide (CPS) and subversion of host defenses were up-regulated. In contrast, in CSF, genes for CPS synthesis were down-regulated. Our study is the first analysis of SS sRNAs involved in virulence and has both improved our understanding of SS pathogenesis and increased the number of sRNAs known to play definitive roles in bacterial virulence. © 2014 Wu et al.

Wang S.,Chinese Academy of Agricultural Sciences | Meng Q.,Chinese Academy of Agricultural Sciences | Meng Q.,Key Laboratory of Animal Bacteriology | Meng Q.,Nanjing Agricultural University | And 7 more authors.
PLoS ONE | Year: 2014

Systemic infections by avian pathogenic Escherichia coli (APEC) are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR) assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs) bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development. © 2014 Wang et al.

He S.,Nanjing Agricultural University | He S.,Key Laboratory of Animal Bacteriology | He S.,OIE Reference Laboratory for Swine Streptococcosis | Shi J.,Chinese Academy of Agricultural Sciences | And 6 more authors.
Microbes and Infection | Year: 2015

In early 2013, a Bengal tiger (Panthera tigris) in a zoo died of respiratory distress. All specimens from the tiger were positive for HPAI H5N1, which were detected by real-time PCR, including nose swab, throat swab, tracheal swab, heart, liver, spleen, lung, kidney, aquae pericardii and cerebrospinal fluid. One stain of virus, A/Tiger/JS/1/2013, was isolated from the lung sample. Pathogenicity experiments showed that the isolate was able to replicate and cause death in mice. Phylogenetic analysis indicated that HA and NA of A/Tiger/JS/1/2013 clustered with A/duck/Vietnam/OIE-2202/2012 (H5N1), which belongs to clade Interestingly, the gene segment PB2 shared 98% homology with A/wild duck/Korea/CSM-28/20/2010 (H4N6), which suggested that A/Tiger/JS/1/2013 is a novel reassortant H5N1 subtype virus. Immunohistochemical analysis also confirmed that the tiger was infected by this new reassortant HPAI H5N1 virus. Overall, our results showed that this Bengal tiger was infected by a novel reassortant H5N1, suggesting that the H5N1 virus can successfully cross species barriers from avian to mammal through reassortment. © 2014 Institut Pasteur.

Shao J.,Key Laboratory of Animal Bacteriology | Zhang W.,Key Laboratory of Animal Bacteriology | Wu Z.,Key Laboratory of Animal Bacteriology | Lu C.,Key Laboratory of Animal Bacteriology
Current microbiology | Year: 2014

Streptococcus suis serotype 2 (SS2) is an emerging zoonotic agent responsible for a number of infections in pigs and humans. Pili have been proposed as virulence factors in Gram-positive bacteria. However, due to the abolition of pili production, the function of the srtBCD pilus cluster, especially the truncated major pilin subunit Sbp2 (Sbp2', Sbp2″), has not been explored. In this study, isogenic mutants (Δsbp2', Δsbp2″) were constructed by homologous replacement in SS2 strain P1/7. Deletion of sbp2' attenuated the virulence in a zebrafish model as shown by more than an eightfold increase in the LD50 of Δsbp2', compared with that of the parent strain. In addition, the adhesion of Δsbp2' to HEp-2 cell monolayers decreased significantly. Compared with the parent strain, no obvious differences in virulence and adherence efficiency were observed for Δsbp2″. Our data suggest that Sbp2' could be involved in SS2 pathogenesis despite absence of its pilus shaft.

Wu Z.,Nanjing Agricultural University | Wu Z.,Key Laboratory of Animal Bacteriology | Wu Z.,OIE Reference Laboratory for Swine Streptococcosis | Wang W.,Nanjing Agricultural University | And 25 more authors.
Gene | Year: 2014

Streptococcus suis (SS) is an important swine pathogen worldwide that occasionally causes serious infections in humans. SS infection may result in meningitis in pigs and humans. The pathogenic mechanisms of SS are poorly understood. Here, we provide the complete genome sequence of S. suis serotype 2 (SS2) strain SC070731 isolated from a pig with meningitis. The chromosome is 2,138,568. bp in length. There are 1933 predicted protein coding sequences and 96.7% (57/59) of the known virulence-associated genes are present in the genome. Strain SC070731 showed similar virulence with SS2 virulent strains HA9801 and ZY05719, but was more virulent than SS2 virulent strain P1/7 in the zebrafish infection model. Comparative genomic analysis revealed a unique 105. K genomic island in strain SC070731 that is absent in seven other sequenced SS2 strains. Further analysis of the 105. K genomic island indicated that it contained a complete nisin locus similar to the nisin U locus in S. uberis strain 42, a prophage similar to S. oralis phage PH10 and several antibiotic resistance genes. Several proteins in the 105. K genomic island, including nisin and RelBE toxin-antitoxin system, contribute to the bacterial fitness and virulence in other pathogenic bacteria. Further investigation of newly identified gene products, including four putative new virulence-associated surface proteins, will improve our understanding of SS pathogenesis. © 2013 Elsevier B.V.

Discover hidden collaborations