Key Laboratory of Animal Bacteriology

Nanjing, China

Key Laboratory of Animal Bacteriology

Nanjing, China

Time filter

Source Type

Ma J.,Nanjing Agricultural University | Ma J.,Key Laboratory of Animal Bacteriology | Sun M.,Nanjing Agricultural University | Sun M.,Key Laboratory of Animal Bacteriology | And 8 more authors.
Environmental Microbiology | Year: 2017

The type VI secretion system (T6SS) of bacteria plays a key role in competing for specific niches by the contact-dependent killing of competitors. Recently, Rhs proteins with polymorphic C-terminal toxin-domains that inhibit or kill neighboring cells were identified. In this report, we identified a novel Rhs with an MPTase4 (Metallopeptidase-4) domain (designated as Rhs-CT1) that showed an antibacterial effect via T6SS in Escherichia coli. We managed to develop a specific strategy by matching the diagnostic domain-architecture of Rhs-CT1 (Rhs with an N-terminal PAAR-motif and a C-terminal toxin domain) for effector retrieval and discovered a series of Rhs-CTs in E. coli. Indeed, the screened Rhs-CT3 with a REase-3 (Restriction endonuclease-3) domain also mediated interbacterial antagonism. Further analysis revealed that vgrGO1 and eagR/DUF1795 (upstream of rhs-ct) were required for the delivery of Rhs-CTs, suggesting eagR as a potential T6SS chaperone. In addition to chaperoned Rhs-CTs, neighborless Rhs-CTs could be classified into a distinct family (Rhs-Nb) sharing close evolutionary relationship with T6SS2-Rhs (encoded in the T6SS2 cluster of E. coli). Notably, the Rhs-Nb-CT5 was confirmed bioinformatically and experimentally to mediate interbacterial antagonism via Hcp2B-VgrG2 module. In a further retrieval analysis, we discovered various toxin/immunity pairs in extensive bacterial species that could be systematically classified into eight referential clans, suggesting that Rhs-CTs greatly diversify the antibacterial pathways of T6SS. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd

Wu Z.,Nanjing Agricultural University | Wu Z.,Key Laboratory of Animal Bacteriology | Wu Z.,OIE Reference Laboratory for Swine Streptococcosis | Wang W.,Nanjing Agricultural University | And 25 more authors.
Gene | Year: 2014

Streptococcus suis (SS) is an important swine pathogen worldwide that occasionally causes serious infections in humans. SS infection may result in meningitis in pigs and humans. The pathogenic mechanisms of SS are poorly understood. Here, we provide the complete genome sequence of S. suis serotype 2 (SS2) strain SC070731 isolated from a pig with meningitis. The chromosome is 2,138,568. bp in length. There are 1933 predicted protein coding sequences and 96.7% (57/59) of the known virulence-associated genes are present in the genome. Strain SC070731 showed similar virulence with SS2 virulent strains HA9801 and ZY05719, but was more virulent than SS2 virulent strain P1/7 in the zebrafish infection model. Comparative genomic analysis revealed a unique 105. K genomic island in strain SC070731 that is absent in seven other sequenced SS2 strains. Further analysis of the 105. K genomic island indicated that it contained a complete nisin locus similar to the nisin U locus in S. uberis strain 42, a prophage similar to S. oralis phage PH10 and several antibiotic resistance genes. Several proteins in the 105. K genomic island, including nisin and RelBE toxin-antitoxin system, contribute to the bacterial fitness and virulence in other pathogenic bacteria. Further investigation of newly identified gene products, including four putative new virulence-associated surface proteins, will improve our understanding of SS pathogenesis. © 2013 Elsevier B.V.

Wu Z.,Nanjing Agricultural University | Wu Z.,Key Laboratory of Animal Bacteriology | Wu Z.,OIE Reference Laboratory for Swine Streptococcosis | Wu C.,BGI Shenzhen | And 24 more authors.
RNA | Year: 2014

Streptococcus suis (SS) is an important pathogen of pigs, and it is also recognized as a zoonotic agent for humans. SS infection may result in septicemia or meningitis in the host. However, little is known about genes that contribute to the virulence process and survival within host blood or cerebrospinal fluid (CSF). Small RNAs (sRNA) have emerged as key regulators of virulence in several bacteria, but they have not been investigated in SS. Here, using a differential RNA-sequencing approach and RNAs from SS strain P1/7 grown in rich medium, pig blood, or CSF, we present the SS genome-wide map of 793 transcriptional start sites and 370 operons. In addition to identifying 29 sRNAs, we show that five sRNA deletion mutants attenuate SS virulence in a zebrafish infection model. Homology searches revealed that 10 sRNAs were predicted to be present in other pathogenic Streptococcus species. Compared with wild-type strain P1/7, sRNAs rss03, rss05, and rss06 deletion mutants were significantly more sensitive to killing by pig blood. It is possible that rss06 contributes to SS virulence by indirectly activating expression of SSU0308, a virulence gene encoding a zinc-binding lipoprotein. In blood, genes involved in the synthesis of capsular polysaccharide (CPS) and subversion of host defenses were up-regulated. In contrast, in CSF, genes for CPS synthesis were down-regulated. Our study is the first analysis of SS sRNAs involved in virulence and has both improved our understanding of SS pathogenesis and increased the number of sRNAs known to play definitive roles in bacterial virulence. © 2014 Wu et al.

Jia H.,Nanjing Agricultural University | Jia H.,Key Laboratory of Animal Bacteriology | Dong W.,Nanjing Agricultural University | Dong W.,Key Laboratory of Animal Bacteriology | And 11 more authors.
Virus Genes | Year: 2015

Staphylococcus aureus is a primary pathogen that causes bovine mastitis resulting in serious economic losses and herd management problems in dairy cows. A novel bacteriophage, JS01, specifically infecting bovine S. aureus, was isolated from milk of mastitis-affected cattle. TEM observation showed that it belonged to the family Siphovirus. The JS01 strain demonstrated a broad host range. The prediction result of PHACTS suggested that the JS01 strain was temperate phage. The JS01 genome is 43,458 bp long, with a GC content of 33.32 % and no tRNAs. Annotation and functional analysis of the predicted ORFs revealed six functional groups: structure and morphology, DNA replication and regulation, packaging, lysogeny, lysis, and pathogenicity. Comparative analysis between JS01, S. aureus MSSA476, and S. aureus prophage PVL was also performed. The characterization and genomic analysis of JS01 provide a better understanding of S. aureus-targeting bacteriophages and useful information for the development of phage-based biocontrol agents against S. aureus. © 2015, Springer Science+Business Media New York.

Wang S.,Chinese Academy of Agricultural Sciences | Meng Q.,Chinese Academy of Agricultural Sciences | Meng Q.,Key Laboratory of Animal Bacteriology | Meng Q.,Nanjing Agricultural University | And 7 more authors.
PLoS ONE | Year: 2014

Systemic infections by avian pathogenic Escherichia coli (APEC) are economically devastating to poultry industries worldwide. E. coli strains belonging to serotypes O1, O2, O18 and O78 are preferentially associated with avian colibacillosis. The rfb gene cluster controlling O antigen synthesis is usually various among different E. coli serotypes. In present study, the rfb gene clusters of E. coli serotypes O1, O2, O18 and O78 were characterized and compared. Based on the serotype-specific genes in rfb gene cluster, an allele-specific polymerase chain reaction (PCR) assay was developed. This PCR assay was highly specific and reliable for sero-typing of APEC O1, O2, O18 and O78 strains. The sensitivity of the assay was determined as 10 pg DNA or 10 colony forming units (CFUs) bacteria for serotypes O2 and O18 strains, and 500 pg DNA or 1,000 CFUs bacteria for serotypes O1 and O78 strains. Using this PCR system, APEC isolates and the infected tissue samples were categorized successfully. Furthermore, it was able to differentiate the serotypes for the samples with multi-agglutination in the traditional serum agglutination assay. Therefore, the allele-specific PCR is more simple, rapid and accurate assay for APEC diagnosis, epidemiologic study and vaccine development. © 2014 Wang et al.

Ma J.,Nanjing Agricultural University | Ma J.,Key Laboratory of Animal Bacteriology | Bao Y.,Nanjing Agricultural University | Bao Y.,Key Laboratory of Animal Bacteriology | And 12 more authors.
Infection and Immunity | Year: 2014

Type VI secretion systems (T6SSs) are involved in the pathogenicity of several Gram-negative bacteria. The VgrG protein, a core component and effector of T6SS, has been demonstrated to perform diverse functions. The N-terminal domain of VgrG protein is a homologue of tail fiber protein gp27 of phage T4, which performs a receptor binding function and determines the host specificity. Based on sequence analysis, we found that two putative T6SS loci exist in the genome of the avian pathogenic Escherichia coli (APEC) strain TW-XM. To assess the contribution of these two T6SSs to TW-XM pathogenesis, the crucial clpV clusters of these two T6SS loci and their vgrG genes were deleted to generate a series of mutants. Consequently, T6SS1-associated mutants presented diminished adherence to and invasion of several host cell lines cultured in vitro, decreased pathogenicity in duck and mouse infection models in vivo, and decreased biofilm formation and bacterial competitive advantage. In contrast, T6SS2-associated mutants presented a significant decrease only in the adherence to and invasion of mouse brain microvascular endothelial cell (BMEC) line bEnd.3 and brain tissue of the duck infection model. These results suggested that T6SS1 was involved in the proliferation of APEC in systemic infection, whereas VgrG-T6SS2 was responsible only for cerebral infection. Further study demonstrated that VgrG-T6SS2 was able to bind to the surface of bEnd.3 cells, whereas it did not bind to DF-1 (chicken embryo fibroblast) cells, which further proved the interaction of VgrG-T6SS2 with the surface of BMECs. © 2014, American Society for Microbiology.

He S.,Nanjing Agricultural University | He S.,Key Laboratory of Animal Bacteriology | He S.,OIE Reference Laboratory for Swine Streptococcosis | Shi J.,Chinese Academy of Agricultural Sciences | And 6 more authors.
Microbes and Infection | Year: 2015

In early 2013, a Bengal tiger (Panthera tigris) in a zoo died of respiratory distress. All specimens from the tiger were positive for HPAI H5N1, which were detected by real-time PCR, including nose swab, throat swab, tracheal swab, heart, liver, spleen, lung, kidney, aquae pericardii and cerebrospinal fluid. One stain of virus, A/Tiger/JS/1/2013, was isolated from the lung sample. Pathogenicity experiments showed that the isolate was able to replicate and cause death in mice. Phylogenetic analysis indicated that HA and NA of A/Tiger/JS/1/2013 clustered with A/duck/Vietnam/OIE-2202/2012 (H5N1), which belongs to clade Interestingly, the gene segment PB2 shared 98% homology with A/wild duck/Korea/CSM-28/20/2010 (H4N6), which suggested that A/Tiger/JS/1/2013 is a novel reassortant H5N1 subtype virus. Immunohistochemical analysis also confirmed that the tiger was infected by this new reassortant HPAI H5N1 virus. Overall, our results showed that this Bengal tiger was infected by a novel reassortant H5N1, suggesting that the H5N1 virus can successfully cross species barriers from avian to mammal through reassortment. © 2014 Institut Pasteur.

Sun M.,Nanjing Agricultural University | Sun M.,Key Laboratory of Animal Bacteriology | Ma J.,Nanjing Agricultural University | Ma J.,Key Laboratory of Animal Bacteriology | And 11 more authors.
Journal of Clinical Microbiology | Year: 2015

Porcine epidemic diarrhea has become pandemic in the Asian pig-breeding industry, causing significant economic loss. In the present study, 11 complete genomes of porcine epidemic diarrhea virus (PEDV) field isolates from China were determined and analyzed. Frequently occurring mutations were observed, which suggested that full understanding of the genomic and epidemiological characteristics is critical in the fight against PEDV epidemics. Comparative analysis of 49 available genomes clustered the PEDV strains into pandemic (PX) and classical (CX) groups and identified four hypervariable regions (V1 to V4). Further study indicated key roles for the spike (S) gene and the V2 region in distinguishing between the PX and CX groups and for studying genetic evolution. Genotyping and phylogeny-based geographical dissection based on 219 S genes revealed the complexity and severity of PEDV epidemics in Asia. Many subgroups have formed, with a wide array of mutations in different countries, leading to the outbreak of PEDV in Asia. Spatiotemporal reconstruction based on the analysis suggested that the pandemic group strains originated from South Korea and then extended into Japan, Thailand, and China. However, the novel pandemic strains in South Korea that appeared after 2013 may have originated from a Chinese variant. Thus, the serious PED epidemics in China and South Korea in recent years were caused by the complex subgroups of PEDV. The data in this study have important implications for understanding the ongoing PEDV outbreaks in Asia and will guide future efforts to effectively prevent and control PEDV. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

Loading Key Laboratory of Animal Bacteriology collaborators
Loading Key Laboratory of Animal Bacteriology collaborators