Key Laboratory of Advanced Technology for Materials of Education Ministry

Chengdu, China

Key Laboratory of Advanced Technology for Materials of Education Ministry

Chengdu, China

Time filter

Source Type

Yang Y.,Key Laboratory of Advanced Technology for Materials of Education Ministry | Yang Y.,Institute of Biomaterials and Surface Engineering | Qi P.,Key Laboratory of Advanced Technology for Materials of Education Ministry | Qi P.,Institute of Biomaterials and Surface Engineering | And 15 more authors.
ACS Applied Materials and Interfaces | Year: 2014

Heparin, an important polysaccharide, has been widely used for coatings of cardiovascular devices because of its multiple biological functions including anticoagulation and inhibition of intimal hyperplasia. In this study, surface heparinization of a commonly used 316L stainless steel (SS) was explored for preparation of a multifunctional vascular stent. Dip-coating of the stents in an aqueous solution of dopamine and hexamethylendiamine (HD) (PDAM/HD) was presented as a facile method to form an adhesive coating rich in primary amine groups, which was used for covalent heparin immobilization via active ester chemistry. A heparin grafting density of about 900 ng/cm2 was achieved with this method. The retained bioactivity of the immobilized heparin was confirmed by a remarkable prolongation of the activated partial thromboplastin time (APTT) for about 15 s, suppression of platelet adhesion, and prevention of the denaturation of adsorbed fibrinogen. The Hep-PDAM/HD also presented a favorable microenvironment for selectively enhancing endothelial cell (EC) adhesion, proliferation, migration and release of nitric oxide (NO), and at the same time inhibiting smooth muscle cell (SMC) adhesion and proliferation. Upon subcutaneous implantation, the Hep-PDAM/HD exhibited mitigated tissue response, with thinner fibrous capsule and less granulation formation compared to the control 316L SS. This number of unique functions qualifies the heparinized coating as an attractive alternative for the design of a new generation of stents. © 2014 American Chemical Society.


Qi P.,Key Laboratory of Advanced Technology for Materials of Education Ministry | Qi P.,Institute of Biomaterials and Surface Engineering | Yang Y.,Key Laboratory of Advanced Technology for Materials of Education Ministry | Yang Y.,Institute of Biomaterials and Surface Engineering | And 12 more authors.
ACS Biomaterial Science and Engineering | Year: 2015

Over the past few decades, plasma surface modification technique has been widely used to selectively improve surface properties and biocompatibility of materials. In this paper, at first a simple and effective method for the deposition of plasma-polymerized allylamine films onto 316L stainless steel (SS) from an allylamine/nitrogen gas mixture was developed. These amine-rich films were characterized by grazing incidence attenuated total reflection Fourier transform infrared spectroscopy (GATR-FTIR) and X-ray photoelectron spectroscopy (XPS), and the anticorrosion properties were demonstrated by electrochemical analysis. Micro-BCA and quartz crystal microbalance with dissipation (QCM-D) results showed that the higher density of amine groups of the allylamine-nitrogen plasma-polymerized film contributes to more serum protein adsorption which may enhance the adhesion and growth of cells on biomaterials. The in vitro and in vivo anti-inflammatory evaluation was performed and it has been confirmed that these nitrogen-rich surfaces could inhibit the activation of macrophages by down-regulation of the pro-inflammatory cytokines TNF-α and IL-6, and exhibit acceptable tissue-compatibility. It was found that with the help of nitrogen, plasma-polymerized allylamine films presented superior biological properties and provided a high potential application in surface modification of biomedical substrate with desirable clinical performance. © 2015 American Chemical Society.

Loading Key Laboratory of Advanced Technology for Materials of Education Ministry collaborators
Loading Key Laboratory of Advanced Technology for Materials of Education Ministry collaborators