Time filter

Source Type

Wang J.-H.,Chongqing Key Laboratory for Oral Diseases and Biomedical science | Wang J.-H.,Chongqing Medical University | Liu Y.-Z.,Chongqing Medical University | Liu Y.-Z.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing | And 16 more authors.
Bone | Year: 2013

Mesenchymal stem cells (MSCs) can self-renew and differentiate into osteogenic, chondrogenic, adipogenic and myogenic lineages. It's reported that bone morphogenetic protein 9 (BMP9) is one of the most potent osteogenic BMPs to initiate the commitment of MSCs to osteoblast lineage. Cyclooxygenase-2 (COX-2) is critical for bone fracture healing and osteogenic differentiation in MSCs. However, the relationship between COX-2 and BMP9 in osteogenesis remains unknown. Herein, we investigate the role of COX-2 in BMP9-induced osteogenesis in MSCs. We demonstrate that COX-2 is up-regulated as a target of BMP9 in MSCs. Both COX-2 inhibitor (NS-398) and COX-2 knockdown siRNAs can effectively decrease alkaline phosphatase (ALP) activities induced by BMP9 in MSCs. NS-398 also down-regulates BMP9-induced expression of osteopontin and osteocalcin, so does the matrix mineralization. The in vivo studies indicate that knockdown of COX-2 attenuates BMP9-induced ectopic bone formation. In perinatal limb culture assay, NS-398 is shown to reduce the hypertropic chondrocyte zone and ossification induced by BMP9. Mechanistically, knockdown of COX-2 significantly inhibits the BMP9 up-regulated expression of Runx2 and Dlx-5 in MSCs, which can be rescued by exogenous expression of COX-2. Furthermore, knockdown of COX-2 apparently reduces BMP9 induced BMPR-Smad reporter activity, the phosphorylation of Smad1/5/8, and the expression of Smad6 and Smad7 in MSCs. NS-398 blocks the expression of BMP9 mediated by BMP9 recombinant adenovirus. Taken together, our findings suggest that COX-2 plays an important role in BMP9 induced osteogenic differentiation in MSCs; BMP9 and COX-2 may form an important regulatory loop to orchestrate the osteogenic differentiation in MSCs. © 2013 Elsevier Inc.

Huang J.,Chongqing Medical University | Huang J.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing | Yuan S.-X.,Chongqing Medical University | Yuan S.-X.,Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing | And 24 more authors.
Biomaterials | Year: 2014

Mouse embryonic fibroblasts (MEFs) are multi-potent progenitor cells (MPCs), can differentiate into different lineages, such as osteogenic, and adipogenic. PTEN, a tumor suppressor, may be involved in regulating bone development through interacting with COX-2. BMP9, the most potent osteogenic BMPs, can up-regulate COX-2 in MPCs. Whether PTEN is involved in BMP9 induced osteogenic differentiation in MPCs remains unknown. The goal of this investigation is to identify the effect of PTEN on BMP9-induced osteogenic differentiation in MPCs and dissect the possible mechanism underlay this. We found that BMP9 down-regulates PTEN, and PTEN inhibitor (VO) effectively increases different osteogenic markers induced by BMP9 in MEFs. Exogenous expression of PTEN inhibits BMP9 induced ectopic bone formation apparently. Mechanistically, we found that VO can enhance BMP9 induced BMPs/Smads signaling prominently without no substantial effects on cell cycle. Further analysis indicates that VO can promote BMP9-induced expression of COX-2 in MEFs, which can be eliminated by PI3K inhibitor. Additionally, COX-2 knockdown abolishes the effect of VO on BMP9-induced ALP activities in MEFs. Our findings suggest that PTEN plays an important role in regulating BMP9 induced osteogenic differentiation in MPCs, which may be mediated by PTEN/PI3K/Akt signaling to modulate the expression of COX-2. © 2014 Elsevier Ltd.

Discover hidden collaborations