Time filter

Source Type

Liu H.,Key Laboratory for Advanced Technologies of Materials | Pei Y.,Key Laboratory for Advanced Technologies of Materials | Xie D.,Key Laboratory for Advanced Technologies of Materials | Xie D.,Southwest Jiaotong University | And 4 more authors.
Applied Surface Science | Year: 2010

In this work, argon (Ar) plasma generated by microwave electron cyclotron resonance (MWECR) has been used to modify the UHMWPE in order to increase the wear resistance. The results showed that the wettability, anti-scratch and wear resistance of UHMWPE treated by the Ar plasma had been improved, comparing with native UHMWPE. The FTIR and XPS spectra indicated the improvement of wettability should come from the oxygen based functional groups generated on the surface of UHMWPE. The improvement of anti-scratch and wear resistance may come from the enhancement of crosslinking of UHMWPE by Ar plasma treatment. © 2010 Elsevier B.V. All rights reserved.

Weng Y.,Key Laboratory for Advanced Technologies of Materials | Chen J.,Key Laboratory for Advanced Technologies of Materials | Tu Q.,Key Laboratory for Advanced Technologies of Materials | Li Q.,Southwest Jiaotong University | And 2 more authors.
Interface Focus | Year: 2012

Biosystem-surface interactions play an important role in various biological events and determine the ultimate functionality of implanted devices. Endothelialization or mimicking of endothelium on the surface of cardiovascular materials is a promising way to solve the problems of material-induced thrombosis and restenosis. Meanwhile, a multifunctional surface design is needed as antithrombotic properties should be considered in the period when the implants are not yet completely endothelialized. In this article, we summarize some successful approaches used in our laboratory for constructing multifunctional endothelium-like surfaces on metallic cardiovascular biomaterials through chemical modification of the surface or by the introduction of specific biological molecules to induce self-endothelialization in vivo. Some directions on future research in these areas are also presented. © 2012 The Royal Society.

Weng Y.,Key Laboratory for Advanced Technologies of Materials | Weng Y.,Southwest Jiaotong University | Song Q.,Key Laboratory for Advanced Technologies of Materials | Song Q.,Southwest Jiaotong University | And 13 more authors.
Biomaterials | Year: 2011

Immobilization of selenocystamine on TiO2 film deposited on silicon wafer and 316 stainless steel stents for catalytic generation of nitric oxide was described. Polydopamine was used as the linker for immobilization of selenocystamine to the TiO2 surface. In vitro stability of the immobilized selenocystamine was investigated and the result shows surface selenium loss occurs mostly in the first four weeks. The selenocystamine immobilized surface possesses glutathione peroxidase (GPx) activity, and the activity increases with the amount of grafted polydopamine. Such selenocystamine immobilized surfaces show the ability of catalytically decomposing endogenous S-nitrosothiols (RSNO), generating NO; thus the surface displays the ability to inhibit collagen-induced platelet acitivation and aggregation. Additionally, smooth muscle cells are inhibited from adhering to the selenocystamine immobilized sample when RSNO is added to the culture media. ELISA analysis reveals that cGMP in both platelets and smooth muscle cells significantly increases with NO release on selenocystamine immobilized samples. Two months in vivo results show that selenocystamine immobilized stents are endothelialized, and show significant anti-proliferation properties, indicating that this is a favorable method for potential application in vascular stents. © 2010.

Discover hidden collaborations