Entity

Time filter

Source Type


Rich K.M.,Norwegian Institute of International Affairs | Wanyoike F.,Kenya International Livestock Research Institute
American Journal of Tropical Medicine and Hygiene | Year: 2010

Although Rift Valley fever (RVF) has significant impacts on human health and livestock production, it can also induce significant (and often overlooked) economic losses among various stakeholders in the marketing chain. This work assesses and quantifies the multi-dimensional socio-economic impacts of the 2007 RVF outbreak in Kenya based on a rapid assessment of livestock value chains in the northeast part of the country and a national macroeconomic analysis. Although study results show negative impacts among producers in terms of food insecurity and reductions in income, we also found significant losses among other downstream actors in the value chain, including livestock traders, slaughter houses, casual laborers, and butchers, as well as other, non-agricultural sectors. The study highlights the need for greater sensitivity and analyses that address the multitude of economic losses resulting from an animal disease to better inform policy and decision making during animal health emergencies. Copyright © 2010 by The American Society of Tropical Medicine and Hygiene. Source


Thornton P.K.,CGIAR Research Programme on Climate Change | Ericksen P.J.,Kenya International Livestock Research Institute | Herrero M.,CSIRO | Challinor A.J.,University of Leeds
Global Change Biology | Year: 2014

The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. © 2014 The Authors. Source


Policy and decision makers have to make difficult choices to improve the food security of local people against the background of drastic global and local changes. Ex-ante impact assessment using integrated models can help them with these decisions. This review analyses the state of affairs of the multi-scale modelling of policy interventions, with an emphasis on applications in developing countries and livestock systems. Existing models do not sufficiently capture the complexity of human-environment interactions across different scales, and especially the link between landscape and local market levels, and national and sub-national level policies and markets is missing. The paper suggests a step wise approach with increasing data needs to bridge this gap. Improvements need to be made at the description of effects of the distribution of local markets on price formation and the representation of farm diversity within a landscape. Analyses in contrasting agro-ecological systems are needed to derive generic summary functions that can be used as input for macro level model analyses. This is especially pertinent for macro level descriptions of crop and livestock production in relation to price developments and of the mosaic of different agricultural land use responses in regions with contrasting socio-economic conditions and developments. © 2014 Elsevier Ltd. Source


Thornton P.K.,Kenya International Livestock Research Institute
Philosophical Transactions of the Royal Society B: Biological Sciences | Year: 2010

The livestock sector globally is highly dynamic. In developing countries, it is evolving in response to rapidly increasing demand for livestock products. In developed countries, demand for livestock products is stagnating, while many production systems are increasing their efficiency and environmental sustainability. Historical changes in the demand for livestock products have been largely driven by human population growth, income growth and urbanization and the production response in different livestock systems has been associated with science and technology as well as increases in animal numbers. In the future, production will increasingly be affected by competition for natural resources, particularly land and water, competition between food and feed and by the need to operate in a carbon-constrained economy. Developments in breeding, nutrition and animal health will continue to contribute to increasing potential production and further efficiency and genetic gains. Livestock production is likely to be increasingly affected by carbon constraints and environmental and animal welfare legislation. Demand for livestock products in the future could be heavily moderated by socio-economic factors such as human health concerns and changing socio-cultural values. There is considerable uncertainty as to how these factors will play out in different regions of the world in the coming decades. © 2010 The Royal Society. Source


The direct dependence of humans on ecosystem services is by far strongest in developing regions where poverty restricts access to resources. This dependency also makes people in developing countries more sensitive to climate change than their developed counterparts. Increasing human populations deteriorates natural habitat, biodiversity and ecosystems services which spiral into poverty and low human welfare. This calls for innovative solutions that encompass the entire socio-ecological-economic system, as recognized on a global scale in the Millennium Ecosystem Assessment. However, innovative and practical solutions require downscaling to regional levels for identifying concrete sets of drivers of change. For Africa specifically, the interplay of human population growth, land use change, climate change and human well-being is a major challenge. This project focuses on the Serengeti-Maasai Mara Ecosystem and associated agricultural areas, a region in East Africa that encompasses parts of Kenya and Tanzania. The ecosystem is world-famous for key aspects of its biodiversity, such as the migration of 1.3 million wildebeest. This flagship ecosystem role will enhance the international interest in the project. In this project, internationally leading researchers from Norway, the Netherlands, Scotland, Denmark and Germany are teaming up with strong local partners in Tanzania and Kenya. The research will be organised in seven interlinked work packages: 1) assemble and integrate the so far separate Kenyan and Tanzanian relevant data on the region; 2) quantify the connections between human population growth, land use change, climate change and biodiversity change; 3) test how biodiversity change leads to changes in key ecosystem services; 4) quantify the dependence of human livelihoods on these ecosystem services. We will implement innovative ways for communication and dissemination of the results of continuous engagement by local stakeholders.

Discover hidden collaborations