Time filter

Source Type

Apeldoorn, Netherlands

Van Liempt S.,Research Center Military Mental Healthcare | Van Liempt S.,Rudolf Magnus Institute of Neuroscience | Vermetten E.,Research Center Military Mental Healthcare | Lentjes E.,University Utrecht | And 2 more authors.
Psychoneuroendocrinology | Year: 2011

Background: Healthy sleep facilitates the consolidation of newly acquired memories. Although patients with posttraumatic stress disorder (PTSD) often complain of sleep disturbances and memory deficits, the interrelatedness of these symptoms is not well understood. Sleep may be disturbed in PTSD by increased awakenings during sleep, which has been associated with decreased growth hormone (GH) secretion. We conducted a controlled study in which we assessed sleep fragmentation, nocturnal secretion of GH, and memory consolidation in patients with PTSD. Methods: While sleep EEG was being monitored, 13 veterans with PTSD, 15 trauma controls (TC) and 15 healthy controls (HC) slept with an iv catheter, through which blood was collected every 20. min from 23:00. h to 08:00. h. Declarative memory encoding was assessed with the 15 word task before sleep, and consolidation was assessed the next morning by a free recall. Results: Sleep was more fragmented in patients with PTSD, with more awakenings in the first half of the night (p<0.05). Plasma levels of GH during the night were significantly decreased in PTSD compared with HC (p<0.05). Furthermore, GH secretion and awakenings were independent predictors for delayed recall, which was lower in PTSD compared to HC (p<0.05). Conclusions: These data show that PTSD is associated with increased awakenings during sleep and decreased nocturnal GH secretion. Furthermore, decreased GH secretion may be related to sleep fragmentation and both variables may exert a negative effect on sleep dependent memory consolidation. © 2011 Elsevier Ltd.

EEG-correlated functional MRI (EEG-fMRI) visualizes brain regions associated with interictal epileptiform discharges (IEDs). This technique images the epileptiform network, including multifocal, superficial and deeply situated cortical areas. To understand the role of EEG-fMRI in presurgical evaluation, its results should be validated relative to a gold standard. For that purpose, EEG-fMRI data were acquired for a heterogeneous group of surgical candidates (n=16) who were later implanted with subdural grids and strips (ECoG). The EEG-fMRI correlation patterns were systematically compared with brain areas involved in IEDs ECoG, using a semi-automatic analysis method, as well as to the seizure onset zone, resected area, and degree of seizure freedom. In each patient at least one of the EEG-fMRI areas was concordant with an interictally active ECoG area, always including the early onset area of IEDs in the ECoG data. This confirms that EEG-fMRI reflects a pattern of onset and propagation of epileptic activity. At group level, 76% of the BOLD regions that were covered with subdural grids, were concordant with interictally active ECoG electrodes. Due to limited spatial sampling, 51% of the BOLD regions were not covered with electrodes and could, therefore, not be validated. From an ECoG perspective it appeared that 29% of the interictally active ECoG regions were missed by EEG-fMRI and that 68% of the brain regions were correctly identified as inactive with EEG-fMRI. Furthermore, EEG-fMRI areas included the complete seizure onset zone in 83% and resected area in 93% of the data sets. No clear distinction was found between patients with a good or poor surgical outcome: in both patient groups, EEG-fMRI correlation patterns were found that were either focal or widespread. In conclusion, by comparison of EEG-fMRI with interictal invasive EEG over a relatively large patient population we were able to show that the EEG-fMRI correlation patterns are spatially accurate at the level of neurosurgical units (i.e. anatomical brain regions) and reflect the underlying network of IEDs. Therefore, we expect that EEG-fMRI can play an important role for the determination of the implantation strategy. Copyright © 2013 Elsevier Inc. All rights reserved.

Boets B.,Catholic University of Leuven | Boets B.,Massachusetts Institute of Technology | Verhoeven J.,Kempenhaeghe | Verhoeven J.,Catholic University of Leuven | And 2 more authors.
Journal of Autism and Developmental Disorders | Year: 2015

We investigated low-level auditory spectral and temporal processing in adolescents with autism spectrum disorder (ASD) and early language delay compared to matched typically developing controls. Auditory measures were designed to target right versus left auditory cortex processing (i.e. frequency discrimination and slow amplitude modulation (AM) detection versus gap-in-noise detection and faster AM detection), and to pinpoint the task and stimulus characteristics underlying putative superior spectral processing in ASD. We observed impaired frequency discrimination in the ASD group and suggestive evidence of poorer temporal resolution as indexed by gap-in-noise detection thresholds. These findings question the evidence of enhanced spectral sensitivity in ASD and do not support the hypothesis of superior right and inferior left hemispheric auditory processing in ASD. © 2014, Springer Science+Business Media New York.

Van Houdt P.J.,Epilepsy Center Kempenhaeghe | Van Houdt P.J.,VU University Amsterdam | Ossenblok P.P.W.,Kempenhaeghe | Boon P.A.J.M.,Epilepsy Center Kempenhaeghe | And 4 more authors.
Human Brain Mapping | Year: 2010

EEG correlated functional MRI (EEG-fMRI) allows the delineation of the areas corresponding to spontaneous brain activity, such as epileptiform spikes or alpha rhythm. A major problem of fMRI analysis in general is that spurious correlations may occur because fMRI signals are not only correlated with the phenomena of interest, but also with physiological processes, like cardiac and respiratory functions. The aim of this study was to reduce the number of falsely detected activated areas by taking the variation in physiological functioning into account in the general linear model (GLM). We used the photoplethysmogram (PPG), since this signal is based on a linear combination of oxy- and deoxyhemoglobin in the arterial blood, which is also the basis of fMRI. We derived a regressor from the variation in pulse height (VIPH) of PPG and added this regressor to the GLM. When this regressor was used as predictor it appeared that VIPH explained a large part of the variance of fMRI signals acquired from five epilepsy patients and thirteen healthy volunteers. As a confounder VIPH reduced the number of activated voxels by 30% for the healthy volunteers, when studying the generators of the alpha rhythm. Although for the patients the number of activated voxels either decreased or increased, the identification of the epileptogenic zone was substantially enhanced in one out of five patients, whereas for the other patients the effects were smaller. In conclusion, applying VIPH as a confounder diminishes physiological noise and allows a more reliable interpretation of fMRI results. © 2009 Wiley-Liss, Inc.

Ryvlin P.,University Claude Bernard Lyon 1 | Gilliam F.G.,Pennsylvania State University | Nguyen D.K.,University of Notre Dame | Colicchio G.,Catholic University of the Sacred Heart | And 12 more authors.
Epilepsia | Year: 2014

Objective To evaluate whether vagus nerve stimulation (VNS) as adjunct to best medical practice (VNS + BMP) is superior to BMP alone in improving long-term health-related quality of life (HRQoL). Methods PuLsE (Open Prospective Randomized Long-term Effectiveness) was a prospective, randomized, parallel-group, open-label, and long-term effectiveness study (conducted at 28 sites in Europe and Canada). Adults with pharmacoresistant focal seizures (n = 112) received VNS + BMP or BMP (1:1 ratio). Medications and VNS parameters could be adjusted as clinically indicated for optimal seizure control while minimizing adverse effects. Primary endpoint was mean change from baseline HRQoL (using Quality of Life in Epilepsy Inventory-89 total score; QOLIE-89). Secondary endpoints included changes in seizure frequency, responder rate (≥50% decrease in seizure frequency), Centre for Epidemiologic Studies Depression scale (CES-D), Neurological Disorders Depression Inventory-Epilepsy scale (NDDI-E), Clinical Global Impression-Improvement scale (CGI-I), Adverse Event Profile (AEP), and antiepileptic drug (AED) load. The study was prematurely terminated due to recruitment difficulties prior to completing the planned enrollment of n = 362. Results for n = 96 who had baseline and at least one follow-up QOLIE-89 assessment (from months 3-12) were included in this analysis. Mixed model repeated measures (MMRM) analysis of variance was performed on change from baseline for the primary and secondary endpoints. Results Significant between-group differences in favor of VNS + BMP were observed regarding improvement in HRQoL, seizure frequency, and CGI-I score (respective p-values < 0.05, 0.03, and 0.01). More patients in the VNS + BMP group (43%) reported adverse events (AEs) versus BMP group (21%) (p = 0.01), a difference reflecting primarily mostly transient AEs related to VNS implantation or stimulation. No significant difference between treatment groups was observed for changes in CES-D, NDDI-E, AEP, and AED load. Significance VNS therapy as a treatment adjunct to BMP in patients with pharmacoresistant focal seizures was associated with a significant improvement in HRQoL compared with BMP alone. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here. © 2014 The Authors Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.

Discover hidden collaborations