Entity

Time filter

Source Type

GLASGOW, United Kingdom

Grant
Agency: GTR | Branch: Innovate UK | Program: | Phase: Feasibility Study | Award Amount: 162.30K | Year: 2015

Miniaturised, portable chip-scale clocks and sensors are regarded as central priorities for future sensors, navigation and secure communication systems. The Royal Academy of Engineering has highlighted the vulnerability of global navigation satellite systems and recommends that all critical infrastructures relying on accurate time measurements should have a robust holdover alternative technology. This project addresses one of the key components in achieving this goal by implementing DFB laser and PPLN technology developed for consumer applications to produce a cost effective, miniature laser technology platform for achieving short wavelength sources for use in quantum systems and sensors. By utilising technology developed for picoprojector, head up display and near eye display applications we will achieve a step change in laser technologies for quantum applications resulting in a 10e5 reduction in form factor. The vision of this project is to demonstate a scaleable, commercially viable technological approach to prodcuing laser sources for quantum applications building on the partners experience in applying these techniques for consumer applications.


Grant
Agency: Cordis | Branch: FP7 | Program: CP-IP | Phase: NMP.2013.1.4-2 | Award Amount: 12.85M | Year: 2013

The thermal properties of nanostructured materials are of fundamental importance to modern technology, but at present reproducible metrological definitions, tools and methods do not exist. This is because the mechanisms of heat transport at the nanoscale are entirely different to those at the macro scale. The project will place nanothermal metrology on a solid basis by an integrated physics-based experimental and modelling effort to: Define a common terminology for nanothermal measurement Realise standard materials and devices for measurement and calibration of nanothermal measurements Develop new instruments and methods for traceable nanothermal measurement Develop calibrated and validated thermal models covering the range from atomic to macro-scale Apply these tools to selected representative industrial problems Assess the tools for suitability for adoption as potential standards of measurement including their traceability and reproducibility The objectives will be achieved by a team comprising physicists, materials scientists, modellers, instrumentalists, microscopists, industrial partners (including SMEs and OEMs) and National Measurement Institutes. The outputs of QUANTIHEAT will be embodied in highly characterised reference samples, calibration systems, measurement tools, numerical modelling tools, reference measurements and documented procedures. The availability of calibrated numerical modelling tools will facilitate the rapid digital thermal design of new nanosystems without the need for extensive prototyping. Their validation against experiment over all length scales will provide a solid basis for the deployment of new nanostructured materials, devices and structures having optimised performance without the need for excessively conservative design. Standardization is a key driver of industrial and scientific progress: QUANTIHEAT is expected to constitute a de-facto standard for a key area of physical measurement at the nanoscale worldwide.

Discover hidden collaborations