Entity

Time filter

Source Type


Haraguchi K.,Kawamura Institute of Chemical Research
Colloid and Polymer Science | Year: 2011

A new class of polymer hydrogels, nanocomposite hydrogels (NC gels), consisting of a unique organic (polymer)/inorganic (clay) network structure, was synthesized by in situ free-radical polymerization in the presence of exfoliated clay nanoparticles in an aqueous system. The resulting NC gels overcame most of the disadvantages associated with chemically cross-linked hydrogels, such as mechanical fragility, structural heterogeneity, and slow deswelling rate. By using thermo-sensitive poly(N-isopropylacrylamide) (PNIPA) as a constituent polymer, NC gels with remarkable mechanical, optical, and swelling properties as well as thermo-sensitivity were obtained. The various properties of NC gels, such as transparency, gel volume, cell culturing, and surface friction changed significantly in response to the temperature and surrounding conditions. All the excellent properties and new stimuli-responsive characteristics of NC gels are attributed to the unique PNIPA/clay network structure. The thermosensitivities and the transition temperature can largely be controlled by varying the clay content and by the addition of solutes. © Springer-Verlag 2011.


Haraguchi K.,Kawamura Institute of Chemical Research
Journal of Stem Cells and Regenerative Medicine | Year: 2012

Novel soft nanocomposite materials with unique organic/inorganic network structures have been developed by extending the strategy of "organic/inorganic nanocomposites" to the field of soft materials. The structures described here were synthesized by in-situ free-radical polymerization of various monomers in the presence of exfoliated clay (hectorite) in aqueous media. The nanocomposite hydrogels (NC gels) and soft nanocomposites (M-NCs) obtained were flexible and transparent soft materials, regardless of the clay content, that could be prepared in various shapes and surface forms, each consisting of individually different polymer/clay network structures. Owing to these unique network structures, both NC gels and M-NCs showed extraordinary mechanical properties such as ultrahigh elongation at break and widely controlled modulus and strength, which could overcome the problems (e.g., mechanical fragility, optical turbidity, poor processing ability) associated with conventional chemically crosslinked materials. In addition, the NC gels and M-NCs exhibited a number of new characteristics related to optical anisotropy, morphology, biocompatibility, stimulus sensitivity and cell culture. In the present review, we outline the novel features of these soft nanocomposites, and demonstrate their potential as soft culture substrates useful for tissue engineering as well as soft, transparent, absorbing, and mechanically tough biomaterials for many bio-applications. © Journal of Stem Cells and Regenerative Medicine. All rights reserved.


Haraguchi K.,Kawamura Institute of Chemical Research
Polymer Journal | Year: 2011

We have fabricated new types of polymer hydrogels and polymer nanocomposites, that is, nanocomposite gels (NC gels) and soft polymer nanocomposites (M-NCs), with novel organic/inorganic network structures. Both NC gels and M-NCs were synthesized by in situ free-radical polymerization in the presence of exfoliated clay platelets in aqueous systems and were obtained in various forms and sizes with a wide range of clay contents. Here, disk-like inorganic clay nanoparticles function as multifunctional crosslinkers to form new types of network systems. NC gels have extraordinary optical, mechanical and swelling/deswelling properties, as well as a number of new characteristics relating to optical anisotropy, polymer/clay morphology, biocompatibility, stimuli-sensitive surfaces, micropatterning and so on. The M-NCs also exhibit dramatic improvements in optical and mechanical properties including ultrahigh reversible extensibility and well-defined yielding behavior, despite their high clay contents. Thus, the serious disadvantages (intractability, mechanical fragility, optical turbidity, poor processing ability, low stimulus sensitivity and so on) associated with the conventional, chemically crosslinked polymeric materials were overcome in NC gels and M-NCs. © The Society of Polymer Science, Japan (SPSJ) All rights reserved.


Patent
Kawamura Institute Of Chemical Research, Dainippon Ink and Chemicals | Date: 2013-06-19

The problem to be solved is to provide a nondrying polymer hydrogel, which is not dried under atmospheric conditions and has excellent mechanical properties, and a method for producing the nondrying polymer hydrogel. A nondrying polymer hydrogel having both excellent nondrying properties and mechanical properties (e.g., excellent elongation properties, compression properties, and surface adhesiveness) can be produced by using a nondrying polymer hydrogel including a deliquescent substance in such a manner that the water vapor pressure shown by the polymer hydrogel is equal to or lower than the water vapor partial pressure in the atmosphere, in particular, by allowing a deliquescent substance to be contained at a high concentration in a polymer hydrogel having a network structure formed by a polymer of a water-soluble radically-polymerizable organic monomer having a specific chemical composition and a delaminated water-swellable clay mineral.


Varade D.,Kawamura Institute of Chemical Research | Haraguchi K.,Kawamura Institute of Chemical Research
Langmuir | Year: 2013

Novel and intriguing one-pot in situ method for the preparation of nanostructured Pt-clay materials under simple conditions is reported. In this synthesis, an inorganic clay mineral such as synthetic hectorite ("Laponite XLG") or natural montmorillonite ("Kunipia F") serves as a mild and effective reducing agent for Pt ions, which is uncommon for such a clay system, and also acts as an outstanding stabilizer for the resulting Pt nanoparticles. In aqueous solution, exfoliated colloidal clay platelets forms complex with Pt ions in the initial stage of mixing. Devoid of any organic dispersants or external reducing agents, subsequently, the Pt nanoparticles (3-6 nm) generated by clay-assisted in situ reduction of Pt ions successfully anchored onto the clay nanoplatelets. The Pt-clay material features a very high surface area (312 m2 g-1) and has excellent catalytic activity, as was kinetically evaluated via the reduction of 4-nitrophenol with NaBH4. After drying, this remarkably stable nanocomposite is completely redispersible in water and displays extreme thermal stability (up to 500 C). On the basis of these results, this synthetic strategy is anticipated to be a very simple, economical, and green approach for the synthesis of nanostructured Pt-clay materials. © 2013 American Chemical Society.

Discover hidden collaborations