Entity

Time filter

Source Type

Groningen, Netherlands

Rottgering H.,Sterrewacht Leiden | Afonso J.,University of Lisbon | Barthel P.,Kapteyn Instituut | Batejat F.,Chalmers University of Technology | And 32 more authors.
Journal of Astrophysics and Astronomy | Year: 2011

At very low frequencies, the new pan-European radio telescope LOFAR is opening the last unexplored window of the electromagnetic spectrum for astrophysical studies. The revolutionary APERTIF- phased arrays that are about to be installed on the Westerbork radio telescope (WSRT) will dramatically increase the survey speed for the WSRT. Combined surveys with these two facilities will deeply chart the northern sky over almost two decades in radio frequency from ~15 up to 1400 MHz. Here we briefly describe some of the capabilities of these new facilities and what radio surveys are planned to study fun-damental issues related to the formation and evolution of galaxies and clusters of galaxies. In the second part we briefly review some recent observational results directly showing that diffuse radio emission in clusters traces shocks due to cluster mergers. As these diffuse radio sources are relatively bright at low frequencies, LOFAR should be able to detect thousands of such sources up to the epoch of cluster formation. This will allow addressing many question about the origin and evolution of shocks and magnetic fields in clusters. At the end we briefly review some of the first and very preliminary LOFAR results on clusters. © 2011 Indian Academy of Sciences. Source


Rottgering H.,Sterrewacht Leiden | Van Weeren R.,Smithsonian Astrophysical Observatory | Bruggen M.,University of Hamburg | Croston J.,University of Southampton | And 27 more authors.
Astronomische Nachrichten | Year: 2013

LOFAR, the Low Frequency Radio Array, is a new pan-European radio telescope that is almost fully operational. One of its main drivers is to make deep images of the low frequency radio sky. To be able to do this a number of challenges need to be addressed. These include the high data rates, removal of radio frequency interference, calibration of the beams and correcting for the corrupting influence of the ionosphere. One of the key science goals is to study merger shocks, particle acceleration mechanisms and the structure of magnetic fields in nearby and distant merging clusters. Recent studies with the GMRT and WSRT radio telescopes of the "Sausage" and the "Toothbrush" clusters have given a very good demonstration of the power of radio observations to study merging clusters. Recently we discovered that both clusters contain relic and halo sources, large diffuse regions of radio emission not associated with individual galaxies. The 2 Mpc northern relic in the Sausage cluster displays highly aligned magnetic fields and and exhibits a strong spectral index gradient that is a consequence of cooling of the synchrotron emitting particles in the post-shock region. We have argued that these observations provide strong evidence that shocks in merging clusters are capable of accelerating particles. For the Toothbrush cluster we observe a puzzling linear relic that extends over 2 Mpc. The proposed scenario is that a triplemerger can lead to such a structure. With LOFAR's sensitivity it will not only be possible to trace much weaker shocks, but also to study those shocks due to merging clusters up to redshifts of at least one. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Source

Discover hidden collaborations